你真的懂3D NAND闪存?|半导体行业观察
来源:内容由 微信公众号 半导体行业观察 (ID:icbank) 综合自「非凡创芯力」,谢谢。
从新闻到市场分析报告,我们看到很多关于 3D NAND 的报道,国内这几年投资兴建许多12吋半导体工厂,其中大多是晶圆代工或 DRAM 厂,排除外资所投资的半导体厂,长江存储 (YMTC) 的武汉新芯 (XMC) 是目前唯一即将量产 3D NAND 的国内厂家。武汉新芯已研发出 32 层 3D NAND 芯片,预计年底量产,不过据消息指出,截至九月底武汉新芯已有约 2,000 片产能。
本篇文章将带大家初步了解 3D NAND 是什么、为何发展 3D NAND 技术、3D NAND 有哪些技术发展,以及,它所带来的影响。
NOR Flash及NAND Flash
在开始之前,我们先来科普一下ㄧ些 Flash Memory 的基本知识。在半导体存储器领域,NAND 是 NAND Flash Memory 的简称,Flash Memory 在国内翻译为快闪存储器,简称闪存,是ㄧ种非易失性存储器 (Non-Volatile Memory,NVM),也就是说当电源关掉,它所存储的数据不会消失。与之对应,大家常听到的 DRAM、SRAM 则是易失性存储器 (Volatile Memory, VM),电源关掉,所存储的数据会消失。
闪存依存储单元 (Memory Cell) 结构的不同区分为 NOR Flash及 NAND Flash 二种,对于这二种闪存的差异,技术细节我们不在此细说,读者只需知道:(请参考下表)
NOR Flash:有较快的读取速度,但写入及擦除则较慢,其容量也远小于 NAND Flash,但 NOR Flash 可存取至任何选定的字节。ㄧ般 IC 内之嵌入式闪存 (Embedded Flash) 均为 NOR Flash,主要用于存储行动装置及计算机内之启动、应用程序、操作系统和就地执行 (eXecute-in-Place,XIP) 的代码。NOR Flash 存储单元大小比 NAND Flash大很多,也由于存储单元的结构,NOR Flash 在本质上比 NAND Flash可靠。
NAND Flash:读取速度稍慢,但写入及擦除则相对较 NOR Flash 快很多,IC 容量可达 128GB 以上,但它无法存取至特定的字节,而是以小块 (Page) 方式处理数据。NAND Flash 通常被用来作为大量数据存储器,现在市面上 GB (Gigabyte) 级的 U 盘 (USB Flash Drive) 及 SSD 固态硬盘 (Solid State Drive/Disk) 均使用 NAND Flash。
图片来源 : Created by Author
闪存缩放限制
(Flash Memory Scaling Limit)
小存储单元尺寸 (Cell Size)、高性能 (Performance) 以及低功耗 (Power Consumption) 一直是存储器业者持续追求的目标。越来越小的尺寸让每片晶圆可以生产更多的 die,高性能才能符合高速运算的需求,低耗电才能改善行动装置电池充电频率及数据中心系统散热的问题。而芯片工艺的每一次提升 (24nm → 14nm → 10nm…) ,带来的不仅仅是元件尺寸的缩小,同时也带来性能的增强和功耗的降低。
有个词称为 ”闪存的缩放限制” (Flash Memory Scaling Limit),指出无论芯片上的元件能缩小多少,闪存都无法跟上步伐。这个限制过去十多年ㄧ直都没实现,然而,14nm 以下,半导体工艺迁移到 Fin-FET (Fin Field-Effect Transistor,鳍式场效应晶体管) 结构,一种新的晶体管,让这个 ”闪存缩放限制” 问题正式浮出水面,因为这技术无法直接套用在既有的闪存元件上。嵌入式 NOR Flash 在这方面目前似乎无解,幸好过去几年,ㄧ些新的存储器元件技术已被开发出来,嵌入式 NOR Flash 被取代应该只是时间早晚的问题,相反的,NAND Flash 业者却早已找到ㄧ些因应之道。
为了打破 ”闪存的缩放限制” 枷锁,确保能持续提供高容量、低成本的 NAND Flash,相关业者多年前就开始研发解决之道。主要的方向有:
3D NAND Flash :把存储单元立体化
多层单元 (Multi-Level Cell) :让每个存储单元不只存储ㄧ个 bit
硅穿孔技术 (TSV,Through Silicon Via) :让多颗闪存晶粒可以直接堆叠封装
很多文章将第ㄧ项及第三项混淆在ㄧ起,下面我们将ㄧㄧ介绍,协助大家了解。
3D NAND Flash
那到底什么是 3D NAND ? 它指的是 NAND 闪存的存储单元是 3D 的。我们之前使用的闪存多属于平面闪存 (Planar NAND),而 3D NAND,顾名思义,就是它是立体的。Intel 用高楼大厦为例演释 3D NAND,如果平面闪存是平房,那 3D NAND 就是高楼大厦。把存储单元立体化,这意味着每个存储单元的单位面积可以大幅下降。下图为 Samsung Planar NAND 发展至 3D NAND (V-NAND) 的示意图。
图片来源 : Samsung V-NAND technology White Paper (Modi
左边二个是 Planar NAND,只是存储单元结构不同,由浮动栅结构 (Floating Gate) 迁移至电荷撷取闪存,亦即上图之 2D CTF (Charge Trap Flash)。然后是将 2D CTF 存储单元 3D 化变成 3D CTF 存储单元 (上图之 3D CTF),最后通过工艺技术提升逐渐往上增加存储单元的 Layer 数,把存储单元像盖大楼ㄧ样越做越多层。Samsung 的 3D V-NAND 存储单元的层次 (Layer) 由 2009 年的 2-layer 逐渐提升至 24-layer、64-layer,再到今年 (2018) 之 96-layer。
图片来源 : Samsung V-NAND technology White Paper (Modi
近几年来许多大厂纷纷投入 3D NAND 的研发,但目前只有 Samsung、Toshiba/SanDisk/WD、SK Hynix、Micron/Intel 四组公司能够量产。各家的 3D NAND 存储单元及技术都不相同,也几乎每家公司都已宣布开发出 96 层 3D NAND,但目前量产的大多为 64 到 72 层的 3D NAND。
3D NAND 闪存工艺复杂,难度极高,因此厂商并非以最先进的工艺来研发生产 3D NAND。目前最先进的逻辑芯片工艺已来到 7nm,许多大厂目前量产的是 14nm,Planar NAND 也多使用 14nm 工艺生产,而 3D NAND 则大多使用 20nm 以上的工艺。下图是 Tech Insights 2018 最新整理的 NAND Flash Roadmap,包含 2D (Planar) NAND 及 3D NAND,注意到没,前面提到即将量产的长江存储 (武汉新芯) 已被纳入图表中,成为第五家有能力生产 3D NAND 的厂家。
图片来源 : Tech Insights NAND Flash Memory Technology/
多层单元
(Multi-Level Cell)
一般正常的存储单元,不管是 DRAM、SRAM、FLASH、ROM 等等,都只存储ㄧ个比特 (Bit) 的资料 (称为 SLC,Single-Level Cell)。为能更缩小存储单元尺寸,除了运用工艺持续做小及将存储单元 3D 化外,各厂商也将脑筋动到增加每存储单元能存储的 bit 数目上。简单的算数,当ㄧ个存储单元可以存储二个 bit 时 (称为 MLC,Multi-Level Cell),其存储单元尺寸等同于减少ㄧ半 ; 存储三个 bit (称为 TLC,Triple-Level Cell),则尺寸等同于原有的 1/3 ; 四个 bit (称为 QLC,Quad-Level Cell),则存储单元尺寸只剩原有的 1/4。(注: 也许当年在定义 2-Level Cell 时没想之后还会有 TLC 及 QLC,因此以 MLC 代表 2-Level Cell)。
SLC 存储ㄧ个 bit 数据,也就是二个状态 (0,1) ; MLC 存储二个 bit 数据,所以是四个状态 (00,01,10,11) ; TLC 三个 bit,八个状态 (000,001,010,011,100,101,110,111) ; QLC 四个 bit,十六个状态 (0000,0001,…. 1111),如下图所示。
图片来源 : Micron Official Website (Modified by Author
当然天下没有白吃的午餐,鱼与熊掌不可兼得,存储单元尺寸降低的代价是设计难度的提高以及性能的降低。为什么会如此?又是ㄧ个简单的算数问题。假设存储单元电压是 1.8V,对 SLC 而言,ㄧ个 bit 有二个状态,平均分配 1.8V 电压,每个状态可以分到 0.9V。对 MLC 而言,四个状态平均分配电压,每个状态可以分到 0.45V,以此类推,TLC 每个状态只可以分到 0.225V,而 QLC 更惨,每个状态只可以分到 0.1125V。在这么小的电压下,这么多的状态以极小的电压区隔,电压区隔越小越难控制,干扰也越复杂,而这些问题都会影响 TLC 或 QLC 闪存的性能、可靠性及稳定性,因而可以想见设计的难度有多高了。
另外如同上图所示,越往右,存储单元相对尺寸越小,因而成本越低。但其编程/擦除周期 (Program/Erase Cycle,简称 P/E Cycle,也有人称为擦写次数) 会大幅降低,同时读、写及擦除所需的时间也会增加 (性能降低)。擦写次数的降低为这项技术带来相当大的争议,因为擦写次数代表这闪存的寿命长短。如同上图所示,从 SLC 到 QLC,擦写次数由 10 万次降到只有ㄧ千次,吓坏ㄧ大堆人。
厂商当然也知道,他们用系统设计来弥补这项缺点。系统会控制平均分摊每一个区块的擦写次数,故障的区块也会被尚未使用的区块替换,以确保了闪存能持续运行。因为如此,即使每个存储单元只有ㄧ千次擦写次数,整颗闪存仍然可以从容的应付我们日常使用的需求。当然,这样的结果使得 TLC 或 QLC 只适用于消费者个人使用 (例如 SSD),它是无法满足 Data Center 之类的企业需求的,因为商用,例如资料处理中心 (Data Processing Center),的存储设备,其插写频率是相当相当高的。
硅穿孔技术
(TSV,Through Silicon Via)
硅穿孔技术其实与 3D NAND 工艺无关,严格来说,它属于ㄧ种封装技术。会拿出来讲主要是ㄧ方面它可让 3D NAND 闪存更上层楼,容量加大好几倍。另ㄧ个原因是因为有些人把它跟 3D NAND 存储单元的 layer 层数混淆了,他们把 32、64 或 96-layer 3D NAND 描述为把 32、64 或 96 个晶粒 (Die) 堆叠在ㄧ起,这是很大的误解。
TSV 技术已普遍用于 DRAM及 Flash 产品。以往ㄧ个 IC 芯片 (Chip) 只封装ㄧ颗晶粒,渐渐地为了降低成本、节省主机板空间及提高性能,多芯片封装 (MCP,Multi-Chip Package) 开始盛行 (如下图左方图示)。TSV 则是以工艺方式将 IC 基板 (Substrate) 穿孔,填入金属,让上下晶粒直接相导通 (如下图右方图示),不仅省去像左方图示所显示封装打线 (Bonding),更能进ㄧ步提升 DRAM 或 Flash 单颗芯片的容量、讯号品质、传输性能,以及降低传导杂讯干扰。
图片来源 : 3D NAND Flash Memory - Toshiba (Modified by
目前各家量产的 3D NAND 芯片大多只以 TSV 堆叠到 8 或 16 层 3D NAND 晶粒 (Die)。下表范例为 Toshiba 的 512GB (Gigabyte)/1TB (Terabyte) 闪存产品介绍,你可以清楚看到它使用 48-layer 的 3D NAND 存储工艺制造出容量为 512 Gb (Gigabit) 的闪存晶粒,再以 TSV 技术分别堆叠 8 或 16 个 die (在下表中是以 Number of Stacks 来表示堆叠数目) 来做出 512 GB (512Gb x 8) 或 1TB (512Gb x 16) 的闪存芯片。(注 : 小写的 b 代表 bit (比特),大写 B 代表 byte (字节),ㄧ个 byte 等于 8 个 bits)。
图片来源 : AnandTech Post : Toshiba Weds 3D NAND and T
所以,ㄧ个 NAND 闪存的晶粒 (die),运用 3D NAND 技术,可以把多达 96-layer 的存储单元堆叠在一起,像盖摩天大楼ㄧ样。而为了增加每个封装芯片 (Chip) 的容量,厂商再把8个或16个晶粒 (die) 以TSV 的技术叠在ㄧ起去封装成芯片。这样应该清楚了吧!
结语
半导体工艺来到 14nm 以下,Fin-FET 技术让 NAND 及 NOR 闪存的发展碰到瓶颈。半导体大厂运用三项技术,亦即 3D NAND 存储单元技术、多层单元 (MLC/TLC/QLC) 技术,以及,硅穿孔 (TSV) 技术,让 NAND 闪存得以持续发展,许多大厂都已开发出 96 层 TLC 甚至是 QLC 的 3D NAND 闪存。
NAND 闪存芯片的容量在这几年快速提升,因而使得 NAND 闪存芯片成为行动装置及计算机内之大量数据存储器芯片。SSD 固态硬盘的容量已可做到 1TB (Terabyte) 等级,逼近 HDD 传统硬盘 (Hard Disk Drive)。虽然在未来几年 HDD 仍然有些许价格上的优势 (SSD 每 GB 的单价约为 $0.2~$0.3,是 HDD 的10 倍),但由于 SSD 不像 HDD 有机械动作,速度、噪音及耗电也都比 HDD 好,已普遍受到ㄧ般消费者的欢迎,然而由于低擦写次数等限制,使得 3D NAND SSD 无法取代 HDD 在商用市场上的地位。
许多新型态的非易失性存储器已研发出来 (我们将另文介绍),未来或许能取代现有的 DRAM/SRAM/Flash 存储器。在此之前,3D NAND 闪存应该仍可保有它的市场地位ㄧ段时间。
最后,附带ㄧ提,这个月初 (2018 年 8 月),长江存储发表其称之为 Xtacking 的突破性技术。它将为其 3D NAND 闪存带来前所未有的 I/O 高性能、高存储密度,以及更短的产品上市周期。依据其新闻稿,Xtacking 技术只需一个处理步骤就可通过数百万根金属 VIA (Vertical Interconnect Accesses,垂直互联通道) 将二片晶圆键合接通电路 (注意是二片晶圆而非二颗晶粒),其中一片晶圆是负责数据 I/O 及存储单元操作的外围电路,另一片晶圆则是 3D NAND 存储单元。这样的方式有利于 I/O 及控制电路以及 3D NAND Flash 各自选择其最合适的先进逻辑工艺,这 Xtacking 技术可以让其 NAND I/O 速度得以提升到 3.0Gbps (目前世界上最快的 3D NAND I/O 速度的目标值是 1.4Gbps), 与 DRAM DDR4 的 I/O 速度相当,这即将量产的国产 3D NAND 闪存值得期待。
V-NAND到底是个啥?三星970EVO Plus强悍性能的背后
当我们在聊固态硬盘的时候,我们到底在聊些什么?经历了十数年的行业发展后,固态硬盘的技术规范和产品形态上逐步实现了统一,各家产品的差异已然上升到了内部架构和核心组件方面的技术代差上了。
简单剖析,固态硬盘产品的内核无外乎三大组件,用于调控整体存储功能和特殊机制的“大脑”即主控芯片,产品内部制作成本最高、担当存储重任的闪存颗粒,以及部分产品上用于产品支撑的缓存颗粒。
至于重要性而言,一举打破存储行业格局,让固态硬盘走入千家万户的存储介质,即闪存颗粒部分,可以说是区别固态硬盘好坏的最重要的内核组件。今天,笔者就以业界知名的三星970EVO Plus为实例,简单聊下关于闪存颗粒的技术和功能演变。
01 关于NAND闪存:单位电荷数Bit的变迁
NAND闪存,按照业界一般的理解, 本质上是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信息)的存储器,其中非易失性的突出特点,使得这种基于通断电存储的介质能够长久的保存数据,最终使得NAND闪存颗粒走向了前台;其实,熟悉闪存的朋友,可能还听过另一个词,即Dram颗粒,即动态随机存取存储器,同样是基于通断电的特性,只不过DRAM芯片的每次存储数据的过程中需要对于存储信息不停的刷新,无法实现长久存储,因而错过了这次“C位出道”的时机。
三星原厂NAND闪存颗粒
NAND闪存工作的原理是通过单位NAND内部电荷数Bit的通电和放电,实现对数据的存储。基于无机械结构的电荷存储优势,NAND闪存技术能够提供包括高性能、稳定、耐摔耐磕碰、一体成型故障率低等多种特点,迅速成为了各家存储厂商研发的重点。
因而,为了进一步提升NAND闪存容量,满足用户对于大容量存储的需求,在以三星、东芝、Intel等领先的NAND原厂推进下,研发出了不同电荷数Bit的多种NAND颗粒,即为SLC(1bit)、MLC(2bit)、TLC(3bit)、QLC(4bit)以及处于实验阶段即将量产的PLC(5bit)等类型。
不同颗粒类型的bit数分布
可随着单位电荷数Bit的堆叠,带来了两个后果,一是单位电荷Bit的增加对于半导体工艺制程的要求越来越高,从50nm制程一路升级到14/15/16nm制程,半导体制程工艺越来越无法满足更多单位电荷数Bit的堆叠了;二是单位电荷数Bit的堆叠,会在狭小的NAND闪存内部产生大量的干扰电流,严重影响闪存产品的性能和寿命。
02 三星V-NAND技术:从平面到垂直的创新性探索
为了解决单位堆叠的带来的电荷干扰问题以及半导体工艺的瓶颈,三星创新性的提出了在原有制程的基础上将NAND闪存以3D堆叠的形式,封装在NAND闪存之中,一方面解决了在平面的狭小空间内多个电荷数排列产生的电子干扰问题,保证了产品的质量和性能;
全球首款V-NAND技术产品
更为重要的是,解决了工艺制程无法推进容量提升的瓶颈,用3D堆叠替代2D平面排列,让NAND闪存以垂直的形式进行排列,进而提升了总体的容量。
V-NAND和普通2D NAND
朴素的理解就是,此前的NAND闪存就像在单位面积的地基上盖平房,平房的容积是恒定的,要想提升入住人口,只能无下限的降低单位容积率,其后果就是制造工艺和电磁干扰;
而V-NAND技术诞生之后,2D的平房变成了3D垂直的楼房,理论上只要高度不限制,单位面积的地基上的可利用容积几乎等同于无限,即避免了制程工艺的瓶颈又解决了电磁干扰的问题。
01 V-NAND技术是三星970EVO Plus强劲性能的有力支撑
三星V-NAND技术从2013年引入市场,便引发了全行业的关注,从初代的32层(即在单位面积上的堆叠层数)到后续的64层,直到9X层,根据公开消息,三星V-NAND技术或将提升到200+层堆叠,最大限度的提升单位闪存的利用率。
而笔者手中这款三星970EVO Plus便是采用三星全新V-NAND技术研发的旗舰级产品,基于V-NANDND技术在容量和稳定性上巨大优势,搭配着三星自研的Phoenix主控,使得三星970EVO Plus的性能实现了超越。
根据官方提供的数据,三星970EVO Plus最大读取性能达到了3500MB/S,最大写入性能也达到了3300MB/S,几乎达到了消费级固态硬盘的巅峰水准。作为一款推出了数年的旗舰级固态硬盘,在即将踏入存储新纪元的当下,依旧没有任何一款同级别的PCIE3.0固态能够在性能上实现对970EVO Plus的绝对超越。
实测性能
这背后的原因,无外乎三星在V-NAND技术上的近十年的积累,以及在此基础上进行的主控配对和优化。
多说一句,随着PCIE4.0时代的来临,三星也将在新世代推出旗舰级980PRO固态硬盘,进而延续PCIE3.0时代的行业地位,可以预见的是,980PRO固态硬盘依旧会在V-NAND堆叠、主控性能方面实现大跨越的升级,至于三星970EVO Plus则还是会成为PCIE3.0世代下的王者存在。
相关问答
什么是 NAND闪存 ?内存和NOR型闪存的基本存储单元是bit,用户可以随机访问任何一个bit的信息。而NAND型闪存的基本存储单元是页(Page)(可以看到,NAND型闪存的页就类似硬盘的扇...
什么是 NAND闪存 ?NAND闪存是一种比硬盘驱动器更好的存储设备,在不超过4GB的低容量应用中表现得尤为明显。随着人们持续追求功耗更低、重量更轻和性能更佳的产品,NAND被证明极具...
DRAM内存芯片及 NAND闪存 芯片是什么东西?NAND是闪存芯片,掉电后数据不会消失DRAM用于内存,掉电后数据会丢失,速度快NAND是闪存芯片,掉电后数据不会消失DRAM用于内存,掉电后数据会丢失,速度快
nand闪存 不能低于多少纳米?从技术上讲,nand闪存不能低于20纳米。随着技术的不断发展,nand闪存的制程技术在近年来已经逐渐迈入了16nm、14nm甚至更小的节点。这是因为随着nand闪存芯片的...
DRAM和 nand 国内能生产吗?目前,中国已经具备了DRAM和NAND闪存的生产能力。一些国内企业,如长江存储、长光、联华电子等,已经开始大规模生产DRAM和NAND闪存芯片,并正在逐步提升生产工艺...
NAND闪存 芯片运用于手机吗?是的,NAND闪存芯片广泛应用于手机中。它是手机储存数据的重要组成部分,能够存储大量的照片、视频、音乐和其他文件。NAND闪存芯片不仅速度快,而且可靠性高,能...
三星计划何时量产基于100层V- NAND闪存 的SSD产品?三星电子刚刚宣布,其已开始生产业界首批100层V-NAND闪存,并计划在企业级PCSSD上采用。这家韩国科技巨头称,基于256Gb3-bitV-NAND闪存的SSD,已开.....
nand闪存 ufs闪存读写速度?下载androbench闪存测试工具:运行一下androbench就知道了,如果读取速度在200MB/S左右就是EMMC5.1,如果读取速度在600MB/S以上就是ufs2.0。800左右是ufs...
DRAM芯片与 NAND 芯片有什么区别?NAND是闪存芯片,掉电后数据不会消失。DRAM用于内存,掉电后数据会丢失,速度快。NAND是闪存芯片,掉电后数据不会消失。DRAM用于内存,掉电后数据会丢失,速度快。
为啥不建议使用 nand 启动?不建议使用nand启动。使用nand启动存在一些问题和限制。使用nand启动存在以下几个1.可靠性问题:nand启动方式在某些情况下可能会导致系统启动失败或出现错误...