快讯
HOME
快讯
正文内容
ATA和NAND 这块SSD为何获评表面固态硬盘?解密光鲜跑分背后的秘密
发布时间 : 2024-11-24
作者 : 小编
访问数量 : 23
扫码分享至微信

这块SSD为何获评表面固态硬盘?解密光鲜跑分背后的秘密

固态硬盘应该怎么选?佛系用户的答案是不是随便买,都行都可以,没关系,只要便宜就好?

1元1GB还要什么自行车?有玩家上了秋名山“老司机”的车却又中途跳车,699元开车的七彩虹SL500 640G中究竟发生了什么,让他发出“表面固态”的长文批判?这块固态硬盘辗转到达了PCEVA手中,让我们一起来看其中奥妙。

既然是表面固态,先来看看它的表面成绩吧。它的AS测试成绩还凑合,秋名山也把AS 10G测试当作了卖点。这是因为SL500 640G使用了全盘SLC Cache,空盘条件下等同全跑在SLC缓存里,空盘即便连续写上200GB都不会掉速,又何惧你10GB写入测试?

然而有细心玩家发现,实际使用中这块固态硬盘卡顿明显,经过空盘和使用250G以上容量后的对比测试,终于发现这是一张拥有两张脸的表面固态硬盘。

空盘PC Mark 7成绩5053分,比金士顿入门级的A400 240G还要低一些,不过还算凑合能看的水平。

再看空盘条件下PC Mark 8成绩,七彩虹SL500 640G能够拿到4924分,勉强取得入门级中流水平,这已经是它能够拿出的最好成绩了。

看到这里佛系用户也许还会说都行,可以,没关系。不要紧,继续往下看。

作为一张格式化后596GB的固态硬盘,当盘内已使用空间达到256GB以上时,七彩虹SL500 640G的PC Mark 7存储测试成绩直降366分,变成了4687。这时我在大厂固态硬盘中已经找不到能和它匹配的型号了,哪怕是120GB也没有这么慢的。

盘内已使用空间达到256GB以上时,PC Mark 8存储测试评分4615分,相比空盘时成绩降低了309分,直接落入比丐中丐还要低的水平,而这才是七彩虹SL500 640G真正的日常使用性能体现。

入门级120G固态硬盘的PCM8得分基本都在4850分以上,在50分就能差出一个等级的PC Mark 8存储测试当中,4615分是一个表面固态硬盘该有的分数。

为何七彩虹SL500 640G使用“BGA封装、Intel原装3D闪存”这样高大上的硬件,却提供了如此不堪的两面派表现?简单说就是这款佛系固态硬盘虽然使用了3D闪存,但却只有两个闪存通道;虽然闪存实际拥有高达768GB的物理容量,但却只搭配了无外置缓存的SMI 2258XT主控;虽然努力用全盘SLC算法营造了一个漂亮的外表性能,但却为了保命放弃了固态硬盘最最基本的闲置垃圾回收机制。

好了关于七彩虹SL500 640G最基本的问题我已经回答完毕,如果你还对这块固态硬盘深层次的内幕有兴趣,请继续读下去,文章比较长是为了让大家从深层次看透这块固态硬盘,如果你现在没有时间,可以用佛系心态先收藏起来慢慢品读。

针对SL500 640G的三大罪一条一条分析,首先是虽然使用了3D闪存,但却只有两个闪存通道。 拆解图中明白可见它只有一颗闪存颗粒,这里先不纠为何“原装闪存”会出现批号数字间隔不同这种细节,七彩虹肯定能给大家很多种解释的。

通过随处可得的SMI开卡工具可知SL500 640G是将MLC类型的L06B闪存开成了TLC类型的TLC类型的B0KB使用。这并不是七彩虹的独家秘籍,而是Intel/美光的这款闪存原本就被设计为MLC/TLC两用。如果仅仅是把MLC开成TLC还不足以造成如此恶劣的后果,但一颗闪存仅能利用主控4个闪存通道其中的2个,这无疑让性能恶化变得雪上加霜。

29F04T2AWCMG2使用了16Die封装,如果按MLC类型的L06B开卡的话它有512GB容量,七彩虹SL500 640G是按TLC类型的B0KB去开卡,因此闪存总容量有768GB,但是它仅仅开放了640G给用户使用。

七彩虹SL500 640G的第二个问题:虽然闪存实际拥有高达768GB的物理容量,但却只搭配了无外置缓存的SMI 2258XT主控。 无外置缓存方案通常适合小容量固态硬盘使用,而搭配大容量闪存时FTL闪存映射表体积过大,将映射表在闪存与主控内置SRAM之间交换容易产生一些问题体现在SL500 640G当中就是,当QD队列深度大于等于2时,普通的纯随机读取都会发生明显的数据传输中断与无响应状况:

虽说七彩虹SL500 640G使用无外置缓存方案不擅长随机读写,但类似BUG并没有发生在其他同样采用无外置缓存方案的固态硬盘当中。遭遇过固态硬盘卡顿BUG的朋友应该都有印象,时不时的卡顿会让固态硬盘用起来比机械盘还难受。由于慧荣采取了和群联截然不同的销售方式,使用SMI主控的非原厂品牌固态硬盘较少有可能获得固件更新和维护,这个BUG或将伴随SL500 640G终身。

除了上边提到的BUG之外,混合读写性能差也极大影响了SL500 640G实际使用性能,甚至于以空盘状态下的读写性能也不比普通TLC固态硬盘好到哪里去。

4K随机读取,队列深度为1时, 80%读取20%写入的条件下性能就会降到16.38MB/s读取、4.03MB/s写入的水平。60%读取40%写入的情况下就更糟糕了,读取和写入带宽加一起还不到20MB/s。

接下来看4K随机读写,队列深度等于32的情况。或许有人会说,七彩虹SL500 640G使用的是无外置缓存的主控,你这样测混合读写是吹毛求疵啊,还真不是,像七彩虹这样烂的性能并不多见。这里的测试区间只有512MB,还没有测到SLC缓存用完后强制垃圾回收的表现,那样的话就完全不能看了。

混合读写是直接影响日常使用体验的——电脑实际使用中不是像理论跑分软件那样读取的时候只读取,写入的时候只写入。Windows作为多任务操作系统,很多程序和后台服务进程同时运行,即便再轻度的使用,实际对于硬盘来说都是读取和写入混杂进行。这也是只看表面AS SSD Benchmark跑分发现不了日常使用速度慢的原因。

七彩虹SL500 640G的第三个问题:努力用全盘SLC算法营造了一个漂亮的外表性能,但却为了保命放弃了固态硬盘最基本的闲置垃圾回收机制。 外表性能和实用性能的巨大差异前边已经说过了,这里来分析SL500奇葩的垃圾回收机制。

固态硬盘和优盘主要有两个不同:优盘通常最多2个闪存通道,而固态硬盘通常有4到8个通道;优盘通常不设闲置垃圾回收机制以避免突然拔掉优盘时数据出错,而固态硬盘为了性能大都会在闲置时进行主动垃圾回收,提前擦除无效数据块,整理出空白块以备数据写入时直接使用。

在七彩虹SL500 640G身上,它只具备优盘级别的2个闪存通道,同优盘一样靠被动强制GC垃圾回收来降低写入放大率。由于应用了全盘SLC模式,不设闲置垃圾回收意味着被写入的数据有机会在被强制GC为TLC态之前就被删除掉,这样就不会消耗闪存的TLC擦写次数,通过龟缩式防守提升理论写入寿命。

SL500 640G非常大胆地在TLC闪存上使用了全盘SLC模式。768GB的闪存容量理论上可以模拟成256GB的SLC缓存,在缓存内以SLC形式写入可达到450MB/s的高速度。而超出缓存之后就需要将部分数据释放为TLC状态,省出空间后再写入,边GC边写入造成了SL500 640G在SLC缓存外的写入性能奇差,尤其是性能一致性劣化到几乎无从谈起的地步。

上图HDTach展示了全盘范围的写入速度变化,由于SL500 640G按照TLC开卡后闪存容量实际有768GB,全盘SLC模式理论上能够提供256GB的全速写入空间,而在这之后就是边GC边写入。

全盘SLC模式是一个比较激进的策略,在此之前只有部分MLC闪存固态硬盘应用,并且SLC缓存的范围会随着用户使用容量的变化的自动调整:当用户写入停下时自动将已写为SLC状态的数据释放回MLC状态,剩余空间继续做SLC模式接受新的写入。

不过在SL500 640G这里,七彩虹做出了一个堪称前无古人的疯狂举动:它不会主动释放SLC缓存,只会在闪存无处可写时才进行实时的GC释放。实时GC释放会造成性能极度恶化,尤其在SM2258XT这种无外置缓存的低端主控上更为明显,当缓存用尽时,固态硬盘会进入持续100%占用状态,每隔20秒左右才会响应一次:

如何形容这种酸爽?桌面程序挨个点,一点反映都没有,等上20秒才拖拖拉拉的开始出现软件界面,这给人的使用体验是非常糟糕的。过去机械硬盘速度慢,但是硬盘工作时发出的噪音会提示用户当前正在工作,而固态硬盘工作是无声的,加上现在很多品牌机都取消了硬盘读写指示灯,用户在固态硬盘卡住的时候得不到任何电脑仍在工作中的提示,就那么卡在那里动弹不得,比CPU满载更容易让人抓狂。

有朋友肯定会说,轻度写入的家庭用户是不是就没有这种问题了呢?表面上看是的,七彩虹SL500 640G在盘内空间使用超过256GB之后会保留至多8GB左右的SLC空间可直接写入。

但在这部分小容量SLC缓存之外,七彩虹SL500 640G并不会进行闲置垃圾回收了。无论你的使用负载有多轻,给它多久的休息时间,它都不会进行垃圾回收工作,以此来尽可能让写入的数据保持在SLC状态,避免写入放大的提升,减少闪存磨损,即便这样会给性能造成极大伤害也在所不惜。

前边已经展示过的PC Mark 8测试成绩已经能够代表七彩虹SL500 640G的家用轻度使用性能,比之当前市售的丐中丐产品还要更慢,减少写入负载也无法弥补它混合读写性能差的缺陷。

更多的延伸测试:为已经上车的朋友找出路

七彩虹用768GB的NAND容量做了全盘SLC模式,那么如果增设用户OP,直接把SL500 640G当成完整SLC使用能解决性能稀烂的问题吗?使用HDAT2或者ATATool可以给固态硬盘增设OP预留空间,现在将七彩虹SL500 640G进行Secure Erase,然后OP缩减成240GB容量,理论上现在就是完全SLC模式了。

现在来看SL500 640G OP到240GB之后的性能表现,持续写入不再掉速,看起来是不是漂亮多了?不过699元原本就能买到更高性能的原厂240GB MLC闪存固态硬盘,谁还会选一款存在天生缺陷的产品呢?

即便完全以SLC模式工作,混合读写性能差的缺陷也决定了它只能发挥出一款入门固态硬盘的中等性能水平,这已经是它最好的结局了。

从测试过程也能发现,这张七彩虹SL500 640G的SLC写入部分是不计入NAND写入量的,当主机写入增加了940G的时候,NAND写入量只增长了48GB,写放大远小于1。闪存以SLC模式使用虽然寿命相比TLC使用会提升,但却也无法与真正的SLC闪存相提并论。这里NAND写入量统计不再能真正体现它的闪存磨损水平。

699元的240G真的一抓一大把,完全有的挑。七彩虹之所以要做这么个奇葩容量出来,其实就是牺牲实际使用性能,搞出一个空盘测试看似性价比爆棚的噱头出来吸引眼球。真正走量的可能是按MLC开卡成480GB的型号,至于那块盘怎么样,有网友反应也存在类似的问题,如有网友想深究可以发盘来给我们测。

我们已经测试过两种SM2258XT主控搭配Intel 3D闪存的固态硬盘,一个是台电S500 128G,结果发现它没有磨损均衡;另一个是七彩虹SL500 640G,结果发现它没有闲置GC垃圾回收。两个硬伤究竟是固件疏忽,还是有意而为,或许只有慧荣自己明白了。

最后让我们脑补一下七彩虹这个奇葩硬件方案诞生的原因:美光的第一代3D闪存有一个比较大的缺陷那就是不支持Copy Back,导致SLC缓存释放效率非常低,缓存用尽后写入速度低下并且波动地很厉害。这一点我们在Intel 600p上就能非常清楚的看到:

在MX300当中美光通过全盘动态SLC来掩盖这个问题,MX300拥有4个闪存通道,并且拥有闲置GC垃圾回收,会主动释放SLC缓存确保家用条件可持续的性能发挥。而只有2个闪存通道的台电和七彩虹的SM2258XT固件也应用了全盘SLC算法,这个算法有写入放大方面的劣势,所以七彩虹在SL500 640G里干脆不做闲置垃圾回收,通过被动强制垃圾回收策略让尽可能多的数据保持在SLC状态,牺牲性能全力保命。SL500同时还使用了无外置缓存的硬件方案,在搭配大容量闪存时FTL闪存映射表的管理也会遇到一些麻烦,最终各种不利因素合并在一起,共同造成了SL500 640G综合性能惨不忍睹的结局。

从闪存卡到SSD硬盘,存储芯片是如何发展起来的?

上篇文章(链接),小枣君给大家详细介绍了DRAM的沧桑往事。

DRAM属于易失性存储器,也就是大家常说的内存。今天,我们再来看看半导体存储的另一个重要领域,也就是非易失性存储器 (也就是大家熟悉的闪存卡、U盘、SSD硬盘等)。

我在“半导体存储的最强科普(链接)”那篇文章中,给大家介绍过,早期时候,存储器分为ROM(只读存储器)RAM(随机存取存储器) 。后来,才逐渐改为易失性存储器非易失性存储器 这样更严谨的称呼方式。

█ 1950s-1970s:从ROM到EEPROM

我们从最早的ROM开始说起。

ROM的准确诞生时间,在现有的资料里都没有详细记载。我们只是大概知道,上世纪50年代,集成电路发明之后,就有了掩模ROM

掩模ROM,是真正的传统ROM,全称叫做掩模型只读存储器(MASK ROM)。

这种传统ROM是直接把信息“刻”进存储器里面,完全写死,只读,不可擦除,更不可修改。它的灵活性很差,万一有内容写错了,也没办法纠正,只能废弃。

后来,到了1956年,美国Bosch Arma公司的华裔科学家周文俊(Wen Tsing Chow) ,正式发明了PROM(Programmable ROM,可编程ROM)

周文俊

当时,Bosch Arma公司带有军方背景,主要研究导弹、卫星和航天器制导系统。

周文俊发明的PROM,用于美国空军洲际弹道导弹的机载数字计算机。它可以通过施加高压脉冲,改变存储器的物理构造,从而实现内容的一次修改(编程)。

后来,PROM逐渐出现在了民用领域。

一些新型的PROM,可以通过专用的设备,以电流或光照(紫外线)的方式,熔断熔丝,达到改写数据的效果。

这些PROM,被大量应用于游戏机以及工业控制领域,存储程序编码。

1959年,贝尔实验室的工程师Mohamed M. Atalla(默罕默德·阿塔拉,埃及裔)Dawon Kahng(姜大元,韩裔) 共同发明了金属氧化物半导体场效应晶体管(MOSFET)

默罕默德·阿塔拉与姜大元

MOSFET发明后,被贝尔实验室忽视。又过了很多年,1967年,姜大元与Simon Min Sze(施敏,华裔) 提出,基于MOS半导体器件的浮栅,可用于可重编程ROM的存储单元。

姜大元(左上)、施敏(右上),还有他们设计的浮栅架构

这是一个极为重要的发现。后来的事实证明,MOSFET是半导体存储器存储单元的重要基础元件,可以说是奠基性技术。

当时,越来越多的企业(摩托罗拉、英特尔、德州仪器、AMD等)加入到半导体存储的研究中,尝试发明可以重复读写的半导体存储,提升PROM的灵活性。

正是基于MOSFET的创想,1971年,英特尔公司的多夫·弗罗曼 (Dov Frohman,以色列裔),率先发明了EPROM (user-erasable PROM,可擦除可编程只读存储器)。

多夫·弗罗曼

EPROM可以通过暴露在强紫外线下,反复重置到其未编程状态。

同样是1971年,英特尔推出了自己的2048位EPROM产品——C1702 ,采用p-MOS技术。

C1702

不久后,1972年,日本电工实验室的Yasuo Tarui、Yutaka Hayashi和Kiyoko Naga,共同发明了EEPROM(电可擦除可编程ROM)

█ 1980~1988:FLASH闪存的诞生

从ROM发展到EEPROM之后,非易失性存储技术并没有停止前进的脚步。

当时,EEPROM虽然已经出现,但仍然存在一些问题。最主要的问题,就是擦除速度太慢。

1980年,改变整个行业的人终于出现了,他的名字叫舛冈富士雄 (Fujio Masuoka,“舛”念chuǎn)。

舛冈富士雄

舛冈富士雄是日本东芝(Toshiba)公司的一名工程师。他发明了一种全新的、能够快速进行擦除操作的浮栅存储器,也就是——“simultaneously erasable(同步可擦除) EEPROM”。

这个新型EEPROM擦除数据的速度极快,舛冈富士雄的同事根据其特点,联想到照相机的闪光灯,于是将其取名为FLASH(闪存)

遗憾的是,舛冈富士雄发明Flash闪存后,并没有得到东芝公司的充分重视。东芝公司给舛冈富士雄发了一笔几百美金的奖金,然后就将这个发明束之高阁。

原因很简单。这一时期,日本DRAM正强势碾压美国,所以,东芝公司想要继续巩固DRAM的红利,不打算深入推进Flash产业。

1984年,舛冈富士雄在IEEE国际电子元件会议上,正式公开发表了自己的发明(NOR Flash)。

在会场上,有一家公司对他的发明产生了浓厚的兴趣。这家公司,就是英特尔

英特尔非常看重FLASH技术的前景。会议结束后,他们拼命打电话给东芝,索要FLASH的样品。收到样品后,他们又立刻派出300多个工程师,全力研发自己的版本。

1986年,他们专门成立了研究FLASH的部门。

1988年,英特尔基于舛冈富士雄的发明,生产了第一款商用型256KB NOR Flash闪存产品,用于计算机存储。

1987年,舛冈富士雄继NOR Flash之后,又发明了NAND Flash 。1989年,东芝终于发布了世界上第一个NAND Flash产品。

NOR是“或非(NOT OR)”的意思,NAND是“与非(NOT AND)”的意思。这样的命名和它们自身的基础架构有关系。

如下图所示,NOR Flash是把存储单元并行连到位线上。而NAND Flash,是把存储单元串行连在位线上。

架构对比

NOR Flash存储器,可以实现按位随机访问。而NAND Flash,只能同时对多个存储单元同时访问。

对于NOR Flash,如果任意一个存储单元被相应的字线选中打开,那么对应的位线将变为 0,这种关系和“NOR门电路”相似。

而NAND Flash,需要使一个位线上的所有存储单元都为 1,才能使得位线为 0,和 “NAND门电路”相似。

看不懂?没关系,反正记住:NAND Flash比NOR Flash成本更低。(具体区别,可以参考:关于半导体存储的最强入门科普。)

█ 1988~2000:群雄并起,逐鹿Flash

FLASH(闪存)产品出现后,因为容量、性能、体积、可靠性、能耗上的优势,获得了用户的认可。英特尔也凭借其先发的闪存产品,取得了产业领先优势,赚了不少钱。

搞笑的是,在英特尔公司取得成功后,东芝不仅没有反省自己的失误,反而声称FLASH是英特尔公司的发明,不是自家员工舛冈富士雄的发明。

直到1997年,IEEE给舛冈富士雄颁发了特殊贡献奖,东芝才正式改口。

这把舛冈富士雄给气得不行,后来(2006年),舛冈富士雄起诉了公司,并索要10亿日元的补偿。最后,他和东芝达成了和解,获赔8700万日元(合75.8万美元)。

1988年,艾利·哈拉里(Eli Harari)等人,正式创办了SanDisk公司 (闪迪,当时叫做SunDisk)。

1989年,SunDisk公司提交了系统闪存架构专利(“System Flash”),结合嵌入式控制器、固件和闪存来模拟磁盘存储。这一年,英特尔开始发售512K和1MB NOR Flash。

1989年,闪存行业还有一件非常重要的事情,在以色列,有一家名叫M-Systems 的公司诞生。他们首次提出了闪存盘的概念,也就是后来的闪存SSD硬盘。

进入1990年代,随着数码相机、笔记本电脑等市场需求的爆发,FLASH技术开始大放异彩。

1991年,SunDisk公司推出了世界上首个基于FLASH闪存介质的ATA SSD固态硬盘(solid state disk),容量为20MB,尺寸为2.5英寸。

东芝也开始发力,陆续推出了全球首个4MB和16MB的NAND Flash。

1992年,英特尔占据了FLASH市场份额的75%。排在第二位的是AMD,只占了10%。除了他俩和闪迪之外,行业还陆续挤进了SGS-Thomson、富士通等公司,竞争开始逐渐变得日趋激烈。

这一年,AMD和富士通先后推出了自己的NOR Flash产品。闪存芯片行业年收入达到2.95亿美元。

1993年,美国苹果公司正式推出了Newton PDA产品。它采用的,就是NOR Flash闪存。

1994年,闪迪公司第一个推出CF存储卡 (Compact Flash)。当时,这种存储卡基于Nor Flash闪存技术,用于数码相机等产品。

1995年,M-Systems发布了基于NOR Flash的闪存驱动器——DiskOnChip。

1996年,东芝推出了SmartMedia卡,也称为固态软盘卡 。很快,三星开始发售NAND闪存,闪迪推出了采用MLC串行NOR技术的第一张闪存卡。

1997年,手机开始配置闪存。 从此,闪存继数码相机之后,又打开了一个巨大的消费级市场。

这一年,西门子和闪迪合作,使用东芝的NAND Flash技术,开发了著名的MMC 卡(Multi Media Memory,多媒体内存)。

1999年8月,因为MMC可以轻松盗版音乐,东芝公司对其进行了改装,添加了加密硬件,并将其命名为SD(Secured Digital) 卡。

后来,又有了MiniSD、MicroSD、MS Micro2和Micro SDHC等,相信70后和80后的小伙伴一定非常熟悉。

整个90年代末,受益于手机、数码相机、便携式摄像机、MP3播放器等消费数码产品的爆发,FLASH的市场规模迅猛提升。当时,市场一片繁荣,参与的企业也数量众多。其中,最具竞争力的,是三星、东芝、闪迪和英特尔。

2000年,M-Systems和Trek公司发布了世界上第一个商用USB闪存驱动器,也就是我们非常熟悉的U盘

它还有一个名字,叫拇指驱动器

当时,U盘的专利权比较复杂,多家公司声称拥有其专利。中国的朗科,也在1999年获得了U盘的基础性专利。

█ 2000~2012:NAND崛起,NOR失势

90年代末,NAND Flash就已经开始崛起。进入21世纪,崛起的势头更加迅猛。

2001年,东芝与闪迪宣布推出1GB MLC NAND。闪迪自己也推出了首款NAND系统闪存产品。

2004年,NAND的价格首次基于同等密度降至DRAM之下。巨大的成本效应,开始将计算机推进闪存时代。

2007年,手机进入智能机时代,再次对闪存市场技术格局造成影响。

此前的功能机时代,手机对内存的要求不高。NOR Flash属于代码型闪存芯片,凭借NOR+PSRAM的XiP架构(XiP,Execute In Place,芯片内执行,即应用程序不必再把代码读到系统RAM中,而是可以直接在Flash闪存内运行),得到广泛应用。

进入智能机时代,有了应用商店和海量的APP,NOR Flash容量小、成本高的缺点就无法满足用户需求了。

于是,NOR Flash的市场份额开始被NAND Flash大量取代,市场不断萎缩。

2008年左右,从MMC开始发展起来的eMMC ,成为智能手机存储的主流技术。

eMMC即嵌入式多媒体卡(embedded Multi Media Card),它把MMC(多媒体卡)接口、NAND及主控制器都封装在一个小型的BGA芯片中,主要是为了解决NAND品牌差异兼容性等问题,方便厂商快速简化地推出新产品。

后来,2011年,UFS (Universal Flash Storage,通用闪存存储)1.0标准诞生。UFS逐渐取代了eMMC,成为智能手机的主流存储方案。当然了,UFS也是基于NAND FLASH的。

SSD硬盘那边就更不用说了,基本上都是采用NAND芯片。

2015年左右,三星、镁光、Cypress等公司,都逐步退出了NOR Flash市场,专注在NAND Flash领域进行搏杀。

█ 2012~现在:闪存行业的现状

市场垄断格局的形成

2011年之后,整个闪存行业动荡不安,收购事件此起彼伏。

那一时期,LSI收购Sandforce、闪迪收购IMFT、 苹果收购Anobit、Fusion-io收购IO Turbine。2016年,发生了一个更重磅的收购——西部数据收购了闪迪

通过整合并购,NAND Flash市场的玩家越来越少。

最终,形成了由三星、铠侠(东芝)、西部数据、镁光、SK 海力士、Intel等巨头为主导的集中型市场。直到现在,也是如此。

在NAND闪存市场里,这些巨头的份额加起来,超过95%。其中,三星的市场份额是最高的,到达了33-35%。

3D NAND时代的到来

正如之前DRAM那篇文章所说,到了2012年左右,随着2D工艺制程逐渐进入瓶颈,半导体开始进入了3D时代。NAND Flash这边,也是如此。

2012 年,三星正式推出了第一代 3D NAND闪存芯片。随后,闪迪、东芝、Intel、西部数据纷纷发布3D NAND产品。闪存行业正式进入3D时代。

此后,3D NAND技术不断发展,堆叠层数不断提升,容量也变得越来越大。

3D NAND存在多种路线。以三星为例,在早期的时候,三星也研究过多种3D NAND方案。最终,他们选择量产的是VG垂直栅极结构的V-NAND闪存。

目前,根据媒体的消息,三星已经完成了第八代V-NAND技术产品的开发,将采用236 层3D NAND闪存芯片,单颗Die容量达1Tb,运行速度为2.4Gb/秒。

三星的市场份额最大,但他们的层数并不是最多的。

今年5月份,镁光已经宣布推出232 层的3D TLC NAND闪存,并准备在2022年末开始生产。韩国的SK海力士,更是发布了238 层的产品。

NOR迎来第二春

再来说说NOR Flash。

前面我们说到,NOR Flash从2005年开始逐渐被市场抛弃。

到2016年,NOR Flash市场规模算是跌入了谷底。

谁也没想到,否极泰来,这些年,NOR Flash又迎来了新的生机。

以TWS耳机为代表的可穿戴设备、手机屏幕显示的AMOLED(有源矩阵有机发光二极体面板)和TDDI(触屏)技术,以及功能越来越强大的车载电子领域,对NOR Flash产生了极大的需求,也带动了NOR Flash市场的强劲复苏。

从2016 年开始,NOR Flash市场规模逐步扩大。

受此利好影响,加上很多大厂此前已经放弃或缩减了NOR Flash规模(镁光和Cypress持续减产),所以,一些第二梯队的企业获得了机会。

其中,就包括中国台湾的旺宏、华邦,还有中国大陆的兆易创新。这三家公司的市场份额,约占26%、25%、19%,加起来的话,超过70%。

█ FLASH闪存的国产化

在国产化方面,NAND Flash值得一提的是长江存储

长江存储于2016年7月26日在武汉新芯集成电路制造有限公司的基础上正式成立,主要股东包括中国集成电路产业投资基金和紫光集团、湖北政府等,致力于提供3D NAND闪存设计、制造和存储器解决方案的一体化服务。

2020 年,长江存储宣布128层TLC/QLC两款产品研发成功, 且推出了致钛系列两款消费级SSD新品。

建议大家支持国产

2021年底,长江存储就已经达到了每月生产10万片晶圆的产能。截止2022年上半年,已完成架构为128层的NAND量产。

目前,长江存储正在努力挑战232层NAND,争取尽快缩小制程差距,追赶国际大厂。

NOR Flash方面,刚才已经提到了兆易创新(GigaDevice)

兆易创新成立于2005年,是一家以中国为总部的全球化芯片设计公司。2012年时,他们就是中国大陆地区最大的代码型闪存芯片本土设计企业。

目前,他们在NOR Flash领域排名世界第三。2021年,兆易创新的存储芯片出货量大约是32.88亿颗(主要是NOR Flash),位居全球第二。

█ 结语

近年来,如大家所见,随着FLASH芯片价格的不断下降,个人家庭及企业用户开始大规模采用闪存,以及SSD硬盘。SSD硬盘的出货量,逐渐超过HDD机械硬盘。存储介质的更新换代,又进入新的高峰。

未来,闪存的市场占比将会进一步扩大。在这样的趋势下,不仅我们个人和家庭用户的存储使用体验将会变得更好,整个社会对存力的需求也可以得到进一步的满足。

半导体存储,将为全人类的数字化转型发挥更大的作用。

好啦,今天的文章就到这里,感谢大家的耐心观看!

参考资料:

1、《半导体行业存储芯片研究框架-NOR深度报告》,方正证券;

2、《杂谈闪存二:NOR和NAND Flash》,老狼,知乎;

3、《存储技术发展历程》,谢长生;

4、《闪存技术的50多年发展史》,存储在线;

5、《存储大厂又一次豪赌》,半导体行业观察;

6、《存储芯片行业研究报告》,国信证券;

7、《国产存储等待一场革命》,付斌,果壳;

8、《关于半导体存储,没有比这篇更全的了》,芯师爷;

9、《计算机存储历史》,中国存储网;10、《3D NAND闪存层数堆叠竞赛,200+层谁才是最优方案?》,闪存市场;

11、《一文看懂3D NAND Flash》,半导体行业观察;

12、百度百科、维基百科相关词条。

相关问答

【信息存储技术的发展过程】作业帮

[回答]人类记录信息、存储信息方法经历了以下几大技术:1,结绳记事;2,文字纸张;3,磁记录方式(磁鼓,磁带,磁盘等)当前比较成熟,4,半导体电记录(电路,电量...

固态硬盘,读写速度太慢,会是什么原因?

固态硬盘写入速度慢的原因有以下几点:1.固态硬盘没有4K对齐。2.固态硬盘3AHCI/IDE模式错误。3.固态硬盘磁盘模式错误。4.固态硬盘SATA2/3接口有别。5.固...

电脑小白想成为一个电脑高手,该从哪里开始学习?

电脑小白想成为一个电脑高手,该从哪里开始学习?这个问题有点卡哇伊,一上来就要成为一个电脑高手,这个有点难,不管是任何东西都是从最基层的部分学起,一步...英...

 百年大党  重返大海 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部