报价
HOME
报价
正文内容
前沿观察nand存储 3D NAND,只能堆叠?
发布时间 : 2024-11-24
作者 : 小编
访问数量 : 23
扫码分享至微信

3D NAND,只能堆叠?

NAND发展似乎进入了一个怪圈。

曾经的东芝存储,如今的铠侠刚宣布了一个好消息:随着存储市场的复苏,铠侠已经结束了NAND 闪存的减产策略,目前铠侠在日本三重县四日市和岩手县北上市两座工厂产线的产能利用率已提升至100%。

此外铠侠在连续 6 个季度的亏损后也在上季度重新实现了103亿日元盈利,由三家银行组成的贷款银团同意对铠侠即将到期的5400亿日元(当前约249.25 元人民币)贷款进行再融资,并提供2100亿日元的新信贷额度。

而其他存储厂商,也在努力恢复之前削减的NAND产能,三星的 NAND 闪存产能已攀升至 70% 左右, SK 海力士正在加大高容量 NAND 产品(如高容量 eSSD)的生产,而西部数据则正将其生产利用率提高到 90% 左右。

不过,NAND市场的寒冬恐怕还未结束,有专家担心,产量的快速增长可能会超过需求,从而抑制 NAND 闪存价格的上涨,韩国工业经济贸易研究院研究员金仰N鹏表示:“除了人工智能数据中心使用的高容量 NAND,很难说整个 NAND 市场都在复苏,产量的突然激增可能会压低一直在上涨的 NAND 价格。”

这也意味着,接下来的一年中,NAND市场依旧存在着许多不确定性,能否像DRAM一样快速恢复元气,还是一个未知数。

而更大的挑战仍然是技术层面的,3D NAND的下一步到底是什么?

NAND,何去何从

对于NAND来说,21世纪的头十年和DRAM别无二致,借助不断发展的摩尔定律,通过更高分辨率的光刻,持续微缩晶体管,从而带来存储密度和性能的提升。

但在2010年之后,这条微缩之路逐渐走到了尽头,一方面,EUV技术量产比想象中更慢,DUV已经达到了极限,而曲线救国的多重曝光方法带来的高成本与低良率也是NAND厂商所不能接受的。

最终,3D NAND技术成为了新的发展方向,传统NAND Flash 采用平面设计,而3D NAND 是以则由原本平铺的存储单元所堆叠而成,由传统单层存储提升至高达上百层的堆叠,让其存储容量相较于传统2D NAND Flash有了大幅提升。

直到今天,3D NAND也在持续推动着整个存储市场的发展,但行业内的对NAND未来发展方向的争议却似乎从未停止过。

早在2004年国际固态电路会议(ISSCC)上,Sub-Micron Circuits的Jagdish Pathak就表示:“为了在2010年之后继续缩放闪存技术,需要进行深入研究。90纳米的闪存已经投入生产,在65纳米上存在争议,有些人认为可以继续缩放,有些人则表示怀疑。我认为在接近45纳米时,浮动栅极结构会面临更大的缩放困难。有很多很多的挑战。”

三星存储部门副总裁Kim Ki-Nam博士选择了基于硫属化物的方法(即PCRAM、PRAM和Ovonics统一存储器),这种方法依赖材料的相变效应来实现切换。Kim说:“它比其他方法具有更好的可扩展性。”

日立中央研究实验室的Tomoyuki Ishii正在研究NanoCrystal存储技术,这是一种单电子存储技术的衍生方法。Ishii说:“它可以垂直和水平缩放,多状态数据提供了所有替代方案中最低的每比特成本。氧化物可以缩放到5纳米的厚度,而且这也是一个纯硅工艺。”NanoCrystal的挑战是编程和擦除时间慢以及高电压。Ishii认为这些问题将在两到三年内解决。

英飞凌科技和摩托罗拉则把资金投入到MRAM上。英飞凌的Sitaram Arkalgud称MRAM是“对通用存储应用极具吸引力的候选者”。然而,Jagdish Pathak指出,第一篇关于MRAM的论文发表在1991年,但至今仍没有商业产品。

英特尔闪存开发总监Greg Atwood说:“目前尚不清楚是否存在或即将出现能够挑战浮动栅极的技术。”

可以看到,20年前,各家对NAND的下一步提出了不同看法,最终,NAND 闪存行业放弃了传统的扩展方式。首批商用 3D NAND 产品于 2013 年推出,堆栈数量为 24 个字线层 (128 Gb)。根据供应商的不同,结构存在差异,以不同的名称为人所知,例如 V-NAND 和 BICS,3D NAND成为了第一个也是唯一一个将真正的 3D 产品推向市场的技术。

为了保证NAND密度能够不断提升,厂商们在这20年时间中实施了更多创新,从而促进具有挑战性的 3D 工艺或进一步提高位密度,后者的一个例子是将每个单元的比特数增加到最多4个,这是NAND闪存技术的真正优势。例如,使用4个比特时,多级单元在每个单独的晶体管中使用16个离散电荷级别,这得益于足够大的存储窗口。

另一个显著的创新是用电荷陷阱单元取代了浮栅单元,这涉及更简化的工艺流程。这两种单元类型的工作原理相对类似,但在电荷陷阱单元中,捕获层是绝缘体——通常是氮化硅——这减少了邻近单元之间的静电干扰。现在,大多数3D-NAND结构都以这种电荷陷阱单元为基础。

值得一提的是,3D NAND依旧在不断的堆叠当中,其中几家主要的NAND厂商,目前已经向200层以上发起进攻。

三星一直处于3D NAND创新的前沿。他们在V7中采用了双层结构,并引入了COP整合以提高性能。随着V8 236层1 Tb TLC产品的发布,三星展示了其不断突破技术界限的承诺。展望未来,三星已经在计划V9,采用280层COP V-NAND和类似于其他领先竞争对手的混合键合技术。

铠侠(KIOXIA)和西部数据(WDC)保持了BiCS结构,专注于提高层数。通过宣布第八代BiCS产品具有218层,并计划推出具备284层的后续版本,铠侠展示了其在NAND技术进步方面的决心。

美光(Micron)转向CTF CuA整合,凭借 176L 和 232L 产品的发布引领市场。他们还在开发 Gen7,可能会跳过 300 层节点,瞄准 400 层设备,展现出他们对未来创新的雄心。

SK海力士继续使用4D PUC结构,计划大规模生产238层V8 4D PUC产品,其正在为进一步发展做好准备,可能在不久的将来达到370层或380层。

长江存储(YMTC)的Xtacking结构取得了显著进展,从176层跳到232层。尽管面临芯片禁令带来的挑战,其仍然专注于开发更先进的QLC设备和multi-Xtacking技术。

旺宏电子(MXIC)以其第一代3D NAND芯片进入市场,应用于任天堂Switch等产品。计划推出具有96层的第二代产品,其准备在行业中取得进一步进展。

厂商们甚至已经开始绘制1000层的蓝图。激进的铠侠近期表示,以每年 1.33 倍的增长率,3D NAND到 2027 年将可达到 1,000 层的水平,三星则在之前预测,到 2030 年左右,其 3D NAND 可以堆叠超过 1,000 层。

随着 3D NAND 的成熟,SLC 和 MLC 逐渐被淘汰,TLC 占据主导地位,而最新的QLC 比 TLC 密度更高,而且还有五级单元工作,成本较低。但问题也接踵而至,尽管 QLC SSD 密度高且成本较低,但性能并不好,更容易出错,使用寿命也不如更昂贵的 TLC NAND 的 SSD 长。

此外,尽管 NAND 取得了诸多进步,但它本身能做的事情非常有限,主要在于其写入速度仍会阻碍其大幅缩小与 DRAM 的差距或达到 Optane 的性能,这主要归结于量子力学,这意味着闪存写入速度为数十毫秒,而 DRAM 写入速度为数十纳秒,该限制将使 NAND 闪存无法填补空白。

AI会是希望吗?

AI不仅带动了DRAM市场中HBM部分的增长,也给NAND带来了一些好消息。

根据市场研究公司Omdia在6月10日的报告,预计今年QLC NAND市场规模将比去年增长85%,其在整体NAND市场的份额将从去年的12.9%增加近8个百分点,达到今年的20.7%。

Omdia预测,到2027年,QLC NAND将在整个NAND市场中占据46.4%的份额,三年内份额将翻倍,接近目前占据51%市场份额的三级存储单元(TLC)产品。值得注意的是,尽管直到去年QLC NAND产品主要面向消费者,但今年需求预计主要增长在更高价位的服务器产品上。

QLC NAND的特性与大型科技公司在其服务器上部署生成性AI的需求非常契合。SSD比传统硬盘驱动器(HDD)提供更快的数据读写速度,这突显了每单位面积存储更多信息和减少功耗的优势。NAND制造商也在迅速响应对QLC NAND需求的激增。有乐观的说法认为,NAND市场的“春天”可能比预期的更强劲。像去年基于AI需求的HBM需求增长一样,NAND市场可能会经历类似的长期市场形成。

不过,尽管QLC NAND吃到了AI的红利,但它本身的问题依旧存在,尤其是在高读取工作负载的环境下,不论是寿命还是性能,都会受到很大的影响。

有趣的是,AI在带动NAND市场发展的同时,也给NAND提供了一种解题思路。

在使用 AI 来更好地管理 SSD 中的 NAND这方面,主控厂商已经走在了前面,据报道,Microchip Technology 的闪存控制器内嵌有机器学习引擎,以帮助延长 NAND 的寿命并改善比特错误率。

在一次独家采访中,Microchip 数据中心解决方案业务部门的 Ranya Daas 说,虽然在后台使用算法会增加开销,因为它需要处理能力,但她表示,机器学习可以使 NAND 单元训练以减少读取和重试次数,从而优化读取电压。“你会从一开始就知道要去读取哪个参考电压。”

Daas认为,这种方法有机会延长 NAND 闪存的寿命,减少延迟,并且不增加必须实时进行的后台处理。

此外,SSD 制造商 Phison Electronics 也在利用 AI 来提高闪存在驱动器内的性能。

“你无法克服闪存的固有延迟,” Phison 的首席技术官 Sebastien Jean 在接受 EE Times 独家采访时表示。“它具有自身的延迟结构。在任何现实的工作负载和任何现实的数据量中,你不可能缓存足够的数据以在统计上产生差异。”

除了其第四代 LDPC ECC 引擎外,Phison 还专注于可以通过 AI 改善的痛点,Jean 说。其 Imagin+ 定制和设计服务包括 AI 计算模型和 AI 服务解决方案,以帮助公司客户设计和工程定制闪存部署。

Imagin+ 与 Phison 产品一起工作,优化用于 aiDAPTIV AI+ML 工作负载。aiDAPTIV+ 将 SSD 集成到 AI 计算框架中,以提高 AI 硬件架构的整体操作性能和效率。它结构性地划分大规模 AI 模型,并通过 SSD 卸载支持运行模型参数。Phison 的方法旨在在有限的 GPU 和 DRAM 资源内最大化可执行的 AI 模型。

从某种意义上说,AI 正在使闪存更好地处理 AI。Jean表示,AI 可以用于热/冷映射。在闪存存储阵列采用的早期,公司必须决定哪些数据足够重要以存储在较快的闪存上,而不是较慢的旋转磁盘上。他说,通过改进热/冷检测映射,可以延长驱动器的寿命,减少延迟,并在整个读/写周期内保持更紧密的性能。

在一味强调堆叠的今天,NAND本身的性能寿命遇到了新的挑战,而AI似乎不仅是NAND未来的“衣食父母”,也是它下一步发展的救星之一。

写在最后

对于NAND产业来说,市面上的参与者比DRAM更多,也意味着竞争更加激烈。

当DRAM产业中HBM这样的高附加值产品出现后,也让许多人开始思考,NAND产业的“HBM式变革”在何处,它能否带来产业的新一轮发展。

更高的密度或许可以满足市场目前的需求,但堆叠层数,或许已经不是唯一的答案。

巨头眼里的存储技术路线图

微电子芯片,也被称为集成电路(IC),是现代社会的核心。作为电子设备的重要组成部分,集成电路促进了通信、计算、医疗、军事系统、交通、清洁能源以及无数其他对美国国家和经济安全至关重要的应用的发展。分立半导体存储器和存储器(DRAM和NAND)目前几乎占所有集成电路销售的三分之一,并且比半导体行业任何其他领域增长更快,预计这一趋势将持续下去。目前,存储器和存储芯片约占世界300mm半导体晶圆产量的三分之二。

在数据经济和当前“数据爆炸”时代推动下,计算生态系统中生成和存储的数据量呈指数级增长,这也使得半导体内存和存储在整个计算基础设施中发挥着越来越重要的作用。随着数据的持续增长,工作负载和应用程序被迫迁移到内存容量更大的体系结构。此外,存储器和存储技术的进步为半导体技术的发展奠定了基础,其迭代速度大约是前沿逻辑的两倍,需要世界上最先进的制造工艺技术和工具。

与其他国家相比,美国在存储领域中的竞争力面临着几个挑战,包括规模经济和更有限的投资激励。随着美国希望通过国家半导体技术中心(NSTC)加强对半导体行业的投资,在基础存储器技术领域的投资和建立卓越存储器联盟,都对确保美国在整个微电子领域的持续竞争力至关重要。这一努力将需要许多不同的创新,包括新存储器架构、新材料、器件和工艺技术的想法,以及制造工具的进步。

在本文中,美光和西部数据概述了存储器行业,并详细介绍了美国存储器行业面临的竞争挑战,确定了与存储器领域相关的特定技术重点领域,并针对每个领域提出了建议。

背景

过去70年里,半导体电子技术的进步推动并增强了无数行业,如电信(广播、电视、电话、互联网)、商业、航空航天和国防以及银行等产业。我们生活的方方面面都与半导体交织在一起,因此半导体在美国国民经济活动和国家安全中发挥着举足轻重的作用。然而,与其他细分市场相比,半导体行业竞争力的成本(资本和运营)较高。美国半导体行业每年将约五分之一的收入投入研发(2020年为440亿美元),在美国主要行业中所占比例第二高,仅次于制药业。持续的进步对于提高美国在半导体领域的竞争力至关重要,这需要在核心研究、制造技术、基础设施和生态系统方面加大持续投资。

根据Gartner,Inc.的调查结果,2021全球半导体收入总计5950亿美元,比2020年增长26.3%。这一收入增长是由不断增长的计算基础设施需求以及Covid-19大流行推动的。图1显示了2021年各细分市场的情况。

在宏观层面上,半导体行业由四个主要部分组成,在基本固态技术方面具有共同的基础,每个部分都有独特的需求和专长:逻辑;存储器/数据存储;模拟;以及光电、传感器和分立(OSD)元件。

逻辑部分的特点是处理数字数据的集成电路,其组件需要不断缩放以在成本、性能、功率和特征方面具有竞争力。例如微处理器、图形处理器、无线基带处理器、无线片上网络和微控制器等等。丰富的消费后市场的产品需求支撑着电信和互联网(数据中心、智能手机、游戏设备等)先进的半导体工艺技术。在过去的十年里,不断重新开发和改进的逻辑芯片成本过高,这使得全球只有少数几家最大的公司拥有生产能力。

存储器/数据存储的特点是,在性能和保持要求的范围内存储和检索数据的集成电路组件。该细分市场由DRAM和NAND技术和产品占据主导地位,需要一些最先进和尖端的半导体工艺技术。DRAM和NAND分别被用作几乎所有电子应用程序和系统的工作存储器和存储器,包括智能手机、个人电脑、服务器和车辆。虽然DRAM和NAND有一些相似之处,但它们也有一些关键的区别,这将在下一节中讨论。

存储器领域的独特之处在于,技术创新对于嵌入式集成电路技术(主要由制造厂生产)和独立产品(在专用设施生产)是同等重要的。到目前为止,半导体行业依靠摩尔定律的缩放优势,已经经历了可预测的发展节奏。然而,这种节奏被接近原子缩放极限技术所阻碍。向3D架构设计方法的过渡可以扩展这些技术的进步,特别是在基于半导体的存储器和存储的情况下。鉴于对这些技术的爆炸性需求,以及对更高性能、更高能效和更先进功能的迅速增长的需求,基于半导体的内存和存储的重点发展至关重要。

模拟部分包括必须与连续、非离散(非数字)信息(例如来自传感器、电气设备和空中广播的信息)接口的集成电路组件。该部分包括混合信号控制,其中模拟信号转换为数字信号,反之亦然。这类半导体采用专门的工艺技术,调整高灵敏度精度要求,往往使用非前沿(称为传统或落后工艺节点)技术制造。

最后一类是其他半导体技术的总称:光电子、传感器和分立(OSD)元件。特别是,分立元件执行单独的电子功能,如电阻器、晶体管和整流器。与模拟组件一样,这些芯片使用跟踪技术处理节点,或者在某些分立器件的情况下,使用完全不同且不太严格的工艺。

考虑到半导体在美国经济和国防所有领域发挥的关键作用,美国政府资助的研究支出迫切需要反映出该行业对国家未来安全和经济健康的重要性。虽然联邦政府占美国半导体研发总投资的13%,但这一比例远低于所有其他技术部门22%的平均水平,见图2。美国在半导体行业的强大领导地位是公认的。随着内存在下一代计算中的重要性日益增加,美国联邦投资必须优先考虑内存和存储研发。

存储产业简介

正如所讨论的,通过为人工智能、5G和数据中心提供基础能力,内存和存储的进步刺激了包括医疗保健、汽车、通信和国防在内各行业的创新。由于这一点,以及前面提到的共同产生的“数据爆炸”,内存和存储已从2000年占全球半导体行业收入的10%增长到今天约占行业收入的30%。随着技术进步对密度、性能和先进功能的要求不断提高,这一趋势将持续下去。例如,与4G手机相比,5G智能手机的内存(DRAM)增加了50%,存储(NAND)内容增加了一倍。今天的自动驾驶车辆需要与高级数据中心服务器一样多的DRAM和NAND存储。随着这项技术的发展和扩散,内存消耗将继续增加。国际数据公司(IDC)预测,到2025年,全球将产生175ZB(每ZB等于一万亿GB)的数据。信息存储支撑着这种数据经济,使半导体存储器几乎渗透到日常生活的方方面面,并为更广泛的半导体生态系统的发展设定了步伐。

存储器在电子系统中无处不在的特性意味着存储单元约占半导体制造中整个器件数量的85%。然而,美国的存储器制造仅占全球总量的2%。考虑到DRAM和NAND在所有计算中的重要作用,以及作为以数据为中心的基础设施需求的基础,这种增长将继续下去。DRAM和NAND通过增强精准医疗能力、优化智能制造、为金融服务提供动力以及帮助实现自主交通,开启了经济机遇。由于存储技术在美国经济中的重要作用和数据安全的重要性,美国保持存储技术的领先地位至关重要。联邦倡议,如提议的NSTC,提供了一个独特的机会,来支持持续的国内存储技术创新,从而支持美国的国家和经济安全。

一、NAND和DRAM扩展

虽然DRAM和NAND闪存在基本结构器件形成和后端金属化方面具有相似的技术元素,但它们也驱动着不同的独特的前沿半导体技术需求。NAND具有几个独特的要求,特别是与高宽高比蚀刻相关的技术,其比一般的逻辑应用先进得多。类似地,DRAM需要精确沉积独特的材料和领先的光刻技术,用于其他半导体部分不需要的高密度电容器结构。对于DRAM和NAND来说,一代比特增长、成本降低以及最终各种终端产品的性能取决于健康的扩展路线图。

二、新兴和其他存储

还有其他存储器技术填补了利基应用和市场,包括独立SRAM、NOR闪存和掩模可编程ROM等不容易被DRAM和NAND闪存填补的易失性和非易失性存储器技术。“新兴存储器”类别包括专注于新型材料和架构的开发,是专注于解决整个计算范式中新层的的新进企业,以及解决现有DRAM和NAND路线图的更长范围扩展限制。这些新兴存储器包括用于存储单元的新型材料-电阻RAM、相变材料(PCM)、磁性RAM (MRAM)和基于铁电材料的RAM (FeRAM)。虽然ReRAM和PCM在利基应用中取得了有限的成功,但它们不能作为DRAM和NAND闪存架构的替代技术。

三、未来技术趋势和挑战

数据密度、带宽能力和电源管理方面的持续改进仍然是内存和存储行业的优先事项。这些优先事项将通过新的创新材料和工艺技术,结合2.5D和3D支持的新计算架构和模式,以及更先进的系统芯片(SoC)和封装解决方案,实现持续的技术扩展。鉴于当今最先进的半导体解决方案的集成水平,这一研发工作还需要包括技术生态系统的关键要素。这一生态系统涵盖了美国国家实验室和学术界的核心研究、内在工艺能力的设备供应商、实现产品进步的异构封装创新,以及与产能增长保持同步的成本效益测试方法。

随着DRAM进入下一个开发阶段,由于该技术接近其基于当前确定的材料和工艺的基本物理极限,它将面临若干挑战。这些限制包括非常昂贵的极紫外(EUV)光刻,其需要显著的每比特成本缩放。当今最先进的设备和系统中的尖端DRAM是基于大约12纳米至15纳米的最小特征,这是由于DRAM的结构要求光刻能力超出最先进的逻辑要求。随着传统DRAM扩展的物理极限逼近,出现了颠覆性技术转型的机会,这将对行业动态产生重大影响。与NAND的开发类似,全球各地的研发人员都在努力通过迁移到3D来颠覆平面DRAM技术。虽然相当多的研发人员已经探索了取代DRAM的各种类型的内存技术,但没有一种技术能够在速度、可靠性和可扩展性方面与DRAM竞争。

NAND闪存体系结构已经迁移到3D,每一个连续的新一代3D NAND驱动器都会通过添加更多的存储层来增加位的面积密度,这也导致存储器阵列的横向缩放以增加对存储器位的接触,从而降低每个新3D节点提供的越来越便宜的存储器能力。与DRAM类似,随着行业发展到数百甚至数千层,工艺变得越来越复杂,单片3D NAND解决方案需要巨大的未来创新,以继续实现性能和成本的进步。

为了帮助确保存储器技术中比特密度缩放和/或比特成本降低的持续步伐,必须在基于替代存储机制的“新兴”和新存储器概念中加强额外的研究路径,还必须同时关注架构创新,以利用新内存技术所支持的功能,并最大限度地提高市场上终端应用的系统级性能和成本效益。这些新的存储器系统概念化,或逻辑存储器层次结构的重新构想,可以产生更高效的系统,该系统通过灵活使用存储器和逻辑器件进行优化,从而获得显著的系统级性能增益,避开当前的限制。

此外,还需要进一步投资开发新的芯片堆叠方法,即所谓的异构集成(HI),这也就需要多芯片键合和专用封装。这项技术将计算机体系结构中尚未统一集成的不同部分紧密结合在一起,从而提供了更高的信息传输速度和能耗降低。HI还允许实现对传统的线和焊球连接来说过于复杂和/或不切实际的新架构。

内存墙

当前的数据处理方案依赖于数据存储与数据处理分离的体系结构,这就需要不断地在内存中来回传输信息,会在时间和精力上产生巨大的性能成本。“存储墙”指的是系统中的时间和能量瓶颈,而由高级分析、大数据、人工智能、机器学习和视频流驱动的数据量的巨大增长加剧了这一问题。新的内存创新始于,利用通过使内存更集中于计算中心来消除高昂成本的数据移动方法,从而创建所谓的“以内存为中心”的体系结构。组织机构正在利用前所未有的内存技术创新,使计算更接近数据源,从而大幅提高性能并开启技术转型的新时代。研发领先的内存技术是支持这一转变的关键。

通过将计算功能放在DRAM附近(也称为近内存计算),可以获得更大的效率增益。通过直接在用于内存计算的快速内存(如DRAM)上执行计算,可以实现更高的效率。模拟计算和完全模拟加速器通过为每个存储器单元提供大量可能的状态,并并行地对大量数据执行计算来进一步扩展范围以提高效率。虽然这是一个有前途的方向,但设备特性和可变性仍然是关键挑战,合适的高质量模拟存储设备仍然难以找到。特定的绑定工作负载更适合特定类型的以内存为中心的处理解决方案,或者处理解决方案的组合,而向特定领域体系结构(DSA)发展的趋势加剧了这种情况。DSA可以根据正在处理的工作负载或域的特性,调整体系结构来实现更高的效率。

每个计算系统都有一个最大允许功率,在图3中标记为“系统功率墙”,是数据位传输(以GB/s为单位的带宽)和数据移动成本(PJ/B)的最大组合。虽然模拟加速器的效率最高,但只有某些工作负载适合这种计算方法,因此DSA将规定如何在新架构和传统架构之间最佳地分配工作负载。

我们已经开始看到集成电路基础设施的变革和存储器的发展,为了支持日益数据驱动的生活方式的需求。内存和存储芯片技术已经过渡到后摩尔定律体系:3D缩放模式,这一转变推动了下一代材料、单元工艺、器件、电路和架构技术解决方案研发的重大转变。利用基于第一原理的方法,需要一种有效的方法来探索和评估用于连续存储芯片解决方案的新材料和器件。支持这种转变的生态系统,包括用于材料、工艺、复杂3D结构的工具,以及用于材料、结构和TCAD建模的平台,需要在支持持续3D缩放的道路上发展和成熟。

在这条道路上继续前进,需要对计算、内存和存储之间的交互进行彻底的重新想象。最优解决方案是将所有组件作为一个整体,包括材料、新型器件、电路设计、架构和异构(3D)封装,同时将框架、操作系统、软件和应用程序优化合并在一起,并仍然满足新计量的安全要求和需求。

以内存为中心的计算

以内存为中心的计算是在内存限制的工作负载下,以低能耗和高性能执行高级计算的逻辑路径,包括人工智能推理和训练。任何以内存为中心的计算都需要从应用程序到存储位的集成创新,包括架构、框架、操作系统和内存系统。计算堆栈中的所有项目必须在系统级驱动的以内存为中心的范例中一起发展。

采用以内存为中心的架构为快速、高效的计算系统创造了巨大的潜力。但是,根据以数据为中心的工作负载结构,需要在带宽和能量之间进行权衡。为了实现这一点,系统必须采用异构设计,如图4所示:1)从当前通用的以计算为中心的体系结构发展而来;2)采用新型专用加速器感知设计;3)采用以内存为中心的、领域特定的新型架构、数据移动感知编程模型以及紧密耦合的内存和计算架构,将更多计算推向内存。

图5展示了当前和未来以内存为中心的计算新模式的构建模块。通过以3D方式堆叠内存芯片(称为高带宽内存(HBM)),并以2.5D方式将这些堆栈与系统集成,使工作负载更接近内存。现在,人们正在探索新的存储架构,将逻辑功能插入到硅级的存储芯片中,与存储阵列一起,并在存储阵列内部,以实现深层内存功能。将这种存储器和计算协同再向前推进一步,我们可以想象内存和逻辑的完全融合,其中模拟内存功能被安排来提供并发计算能力。

为了实现存储技术的突破性发展,需要能够与传统器件集成的新概念和相关材料。为了与当前的DRAM和NAND技术竞争,任何新的存储器或选择设备的发现都必须在性能、功率、面积、功能、成本和复杂性等许多(如果不是全部)关键设备指标方面提供颠覆性的优势。效益评估必须考虑整体系统级需求,并对材料、工艺、器件和电路以及系统架构的整个堆栈进行基准测试。缩放考虑已经被推进到可能需要利用固有的2D和1D材料设备解决方案的程度,并且可能需要在接近原子分辨率下工作的概念。重要的是理解基本的器件机制,以及某些设备概念缺陷(例如,可能涉及开关机制中的原子运动),这通常会导致设备级别的可变性或随机性。为了在大型阵列实施中使用,必须几乎完全消除任何设备性能变化。

卓越存储联盟

为了确保美国在半导体存储器和存储技术关键领域的领导地位,NSTC应制定并阐明,实现下一代这些技术的长期(>5年)愿景和路线图。

卓越存储联盟(MCOE)将支持这一时代的变革和所需的新技术创新。MCOE应是跨行业、学术界和政府的重点工作,具有与克服本文概述中的挑战相关的明确目标,并应与其他关键卓越联盟(Coe)保持一致,以支持NSTC的总体目标。

MCOE应专注于存储器的材料、工艺、3D结构和制造技术的竞争前研究,并与其他Coe在封装和互连技术方面进行合作,以实现下一代高能效计算和特定领域加速器。活动应包括三维设计自动化和建模工具/方法的开发。MCOE还应确定一系列全国性的内存性能扩展所面临的重大挑战,鼓励整个美国半导体生态系统的大规模合作。

MCOE实现下一代解决方案的关键活动包括:

材料、基础工艺/计量技术和最先进的分析技术的先进研究和开发

用于快速开发和协同优化复杂技术和系统的建模方法和工具

下一代3D存储技术和支持矢量开发

晶圆和芯片级的异构集成(功能和/或物理)

X点阵列与先进CMOS集成,用于新概念验证

解决堆叠存储芯片相关挑战的先进封装

卓越存储联盟(Memory Coalition of Excellence)的路线图应侧重于使用新概念(如近内存计算、内存计算和模拟计算)的、以内存为中心的计算架构,旨在加速普遍的数据密集型工作负载(如人工智能推理和训练)。

基础设施

NSTC基础设施应能够开发构建原型的关键能力,以展示下一代微电子应用的改变游戏规则的改进。设施和基础设施应提供先进的内存/存储、逻辑和模拟系统原型,并支持支持材料、设备和封装。

为实现这些目标而设想的基础设施包括先进的300 mm洁净室空间,具有制造全流程概念存储器芯片原型、组件和模块的尖端半导体工具能力,以及用于验证和测试的专用系统实验室。为了确保从实验室到工厂的快速过渡,材料和设备应与每个COE中的工艺和集成技术一起共同开发。基础设施应包括:

技术发展

用于构建复杂3D纳米结构的工艺/工具硬件开发

用于高级掩模和晶圆图案化(EUV)解决方案的工具/材料/掩模

开发下一代高级建模方法和工具的平台(物理、材料、结构、TCAD、设计等)

加速开发下一代解决方案的组合材料/器件方法

先进的计量和材料分析/表征工具

异构集成

与NSTC合作,推动高级内存/逻辑异构集成的技术载体,并利用与NSTC中封装/HI相关的其他高级研发

开发具有极高对准精度和低缺陷率的先进晶圆到晶圆和芯片到晶圆键合技术

驱动高级结构、应力、材料和电子设计自动化(EDA)建模解决方案

存储芯片vehicle

全流程加工和计量步骤所需的所有制造工具均配有专用的300 mm洁净室空间

高级metro/测试/表征资源

内存测试芯片原型支持

为了实现NSTC投资的最大价值,最大限度地提高执行速度和与现有基础设施的协同效应,并提供最佳专业知识,我们建议将卓越存储联盟的一部分构建在现有领先设施的相邻附件中。MCOE将被配置为促进行业和大学研究人员与学生之间扩大互动机会。此外,MCOE将为员工队伍发展提供先进的设施、最先进的工具和指导环境。基础设施的设计将确保NSTC员工能够轻松访问。为了促进从实验室到工厂的快速过渡,MCOE将配备有支持项目的设备,以验证需要前沿半导体技术原型的初创企业和小公司提出的新概念。作为创新设施分布式网络的枢纽,存储联盟将成为涵盖学术界、国家实验室、初创企业和行业参与者(包括工具和软件供应商)的合作生态系统的锚。该生态系统将提供支持纵向和横向集成的基础设施,存储器联盟将与其他卓越联盟合作,提供集成整个半导体生态系统新进展的前沿创新。

协作框架

扩大半导体概念原型的合作对于把内存、存储、逻辑和模拟结合在一起至关重要,能够给支持对异构解决方案带来更多关注,并促进来自多个技术载体(如材料、器件、电路、架构、软件和建模)的新概念组合。一个集体的、协作的存储联盟框架,加上现场的、最先进的制造设施,将创造一个吸引来自政府、学术界和工业界的最优秀研究人员的环境。

为了吸引所需人才,NSTC需要制定引人注目的技术路线图,提供最先进的基础设施,并展示其为跨学科合作提供无与伦比机会的能力。

结论

国家半导体技术中心(NSTC)可以在推动美国技术创新和长期领导方面发挥关键作用。考虑到半导体行业创新的激烈步伐以及对存储器和存储日益增长和不断扩大的需求,存储器必须是NSTC的一个关键重点。NSTC的协同推动可以通过支持下一代以内存为中心的设计架构、3D内存结构技术开发和异构集成,加快内存和存储领域的创新。NSTC应创建一个卓越存储联盟,以支持对未来计算基础设施所需的、上述以内存为中心的、创新的集中关注。对内存进步的投资,将防止基于半导体的技术停滞不前,并确保技术进步的持续节奏,从而确保美国经济和国家安全的持续。

★ 点击文末【阅读原文】,可查看本文原文链接!

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第3127内容,欢迎关注。

晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装

原文链接!

相关问答

江苏淮安第四代 存储 器项目预计明年量产,你怎么看?

江苏时代芯存半导体有限公司正式成立于2016年10月,公司股东有江苏时代全芯存储科技有限公司和淮安园兴投资有限公司。公司致力于开发及生产搭载最新PCM技术的存...

中国的半导体技术怎么样?在世界上处于什么水平?

半导体技术是指半导体加工的各种技术,包括晶圆的生长技术、薄膜沉积、光刻、蚀刻、掺杂技术和工艺整合等技术。在半导体领域中,半导体设备的研发是重中之重,...

microlino是什么品牌?

来自瑞士的电动车近日,瑞士电动车制造商Microlino宣布他们已经开始新一阶段的测试工作。他们称,该车正在测试全新的Microlino2.0平台以及改进过的悬挂系统...

华为DRAM供应商是哪家?

美光(美光):为华为供应内存产品,是美国最大的电脑内存芯片商,产品包括DRAM,NAND闪存,CMOS图像传感器,其它半导体组件以及存储器模块,用于前沿计算,消费...美...

microntechnology是什么品牌?

是属于美光科技有限公司旗下的品牌。microntechnology是高级半导体解决方案的全球领先供应商之一。通过全球化的运营,美光公司制造并向市场推出DRAM、NAND闪...

micron显存海力士显存哪个好?

micron显存和海力士显存相比,肯定是micron显存更好。micron是高级半导体解决方案的全球领先供应商之一,通过全球化的运营,美光公司制造并向市场推出DRAM、NAN...

什么是嵌入式系统?

嵌入式系统是指由硬件和软件组成并且能够移植到硬件设备的操作系统。而相比较于普通的PC操作系统,嵌入式操作系统不能存储大容量的内存和程序。所以嵌入式操作系...

2021十大cpu排行榜?

美光是全球最大的半导体储存及影像产品制造商之一,其主要产品包括DRAM、NAND闪存、NOR闪存、SSD固态硬盘和CMOS影像传感器。总公司(MicronTechnology,Inc.)...

手机镁光和闪迪哪个好?

镁光更好一点,镁光科技有限公司是高级半导体解决方案的全球领先供应商之一。镁光公司制造并向市场推出DRAM、NAND闪存、CMOS图像传感器、其它半导体组件以及存...

 刘暖曦事件  死链检测工具 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部