我们熟知的NAND闪存,还有个“双胞胎兄弟”
【IT168 评论】无论消费者还是企业机构,大多数人在谈到闪存时,首先想到的就是NAND闪存。从一定的现实意义上来讲,NAND闪存可以说已经成为固态硬盘的代名词。基于块寻址结构和高密度,使其成为磁盘的完美替代品。
NOR闪存是另一种与NAND不同的闪存类型,它具有不同的设计拓扑结构,某些特定的应用场景下更为适合。在比较NAND和NOR闪存在不同应用中的相对优势和适用性之前,检查其结构差异是很重要的。
NAND闪存产品是当今已经达到高水准的存储芯片,是当前市面上嵌入式以及独立式SSD的主要原材料。多层单元(MLC)技术和3D制造工艺的结合,将NAND存储单元垂直蚀刻到硅衬底上,使存储密度和NAND芯片容量呈几何级增长。
NAND与NOR电路基础
尽管NAND闪存是这两种非易失性内存技术中相对流行的一种,但NAND和NOR都是由同一名东芝公司的工程师在上世纪80年代中期发明的。要理解这两个种类的区别和命名,需要简要回顾一下逻辑门的基础知识。
NAND和NOR分别涉及到布尔逻辑函数中的逻辑“和”(and)以及“或”(or)。如下所示,NAND和NOR都生成响应两个二进制输入的输出。
响应两个二进制输入的NAND和NOR输出
NAND和NOR逻辑门仅仅为它们各自的功能实现了上面这个真值表。
NAND门在概念上是作为AND门实现的——当两个输入都是1时输出1——后面跟着一个NOT门,这是一个逻辑反转。相应的,NOR门在概念上是一个OR门——有任何一个输入是1时输出1,然后是NOT门,这是一个逻辑倒装。
布尔逻辑的背景对于理解NAND和NOR闪存至关重要,因为闪存单元被连接到一个行和列的数组中。在NAND闪存中,一组中的所有单元(通常是一个字节的倍数,取决于芯片的大小)共享一条位线,并以串行方式连接每个单元,每个单元连接到一个单独的字行。同一字行连接一个内存块中的多个字节,通常为4 KB到16 KB。因此,只有当所有的字线都是高或单状态时,位线才会降低或变为零状态,这实际上将内存组转换为一个多输入NAND门。
与此相反,NOR闪存并行组织位线的方式是,当位线和字线都处于低或零状态时,内存单元只保持高或单状态。
NAND单元的串联结构使得它们可以通过导电层(或掺杂层)连接在衬底上,而不需要外部接触,从而显著减少了其横截面积。
NAND闪存单元的串联连接意味着它们不需要单元之间通过金属层进行外部接触——而这正是NOR拓扑结构所需的。使用导电层连接硅衬底上的单元意味着NAND闪存的密度通常比NOR高两个数量级,或100倍。此外,组内单元的串联连接使它们可以垂直地堆积在3D数组中,位线类似于垂直管道。
相反,由于NOR闪存单元不能单独寻址,因此它们对于随机访问应用程序更快。
NAND与NOR产品类型
这两种类型的闪存具有明显的特性和性能差异,它们有各自最适合的应用程序类型。除了容量外,NAND和NOR闪存还具有不同的运行、性能和成本特性,如下图所示。
这两种闪存中也有几种不同的产品类型,它们在I/O接口、写入持久性、可靠性和嵌入式控制功能方面有所不同。
NAND闪存产品类型
NAND闪存以单层(SLC)、多层(MLC)、三层(TLC)或四层(QLC)的形式在每个单元(cell)中存储bit,分别为1 bit/cell、2 bit/cell、3 bit/cell、4 bit/cell。要确定哪种类型的NAND最适合于工作负载,简单来说,每个单元的位数越高,其容量就越大——当然,是以数据持久性和稳定性为代价的。
NAND设备只是没有任何外围电路的存储芯片,这些外围电路使NAND闪存可以在SSD、U盘或其他存储设备中使用。相比之下,托管型NAND产品嵌入了一个内存控制器来处理必要的功能,比如磨损调平、坏块管理(从使用中消除非功能性内存块)和数据冗余。
NOR闪存产品类型
串行设备通过只暴露少量(通常是1到8个)I/O信号来减少包的pin数。对于需要快速连续读取的应用程序来说,这是理想的选择。NOR闪存通常用于瘦客户机、机顶盒、打印机和驱动器控制器。
并行NOR产品暴露多个字节,而且通常使用内存页而不是单独的字节进行操作,更适用于启动代码和高容量应用程序,包括数码单反相机、存储卡和电话。
两种闪存都是不可或缺的
NAND是闪存的主力,广泛用于嵌入式系统和SSD等存储设备的大容量数据存储。不过,NOR 闪存在存储可执行的启动代码和需要频繁随机读取小数据集的应用程序方面起着关键作用。显然,这两种类型的闪存将继续在计算机、网络和存储系统的设计中发挥作用。
原文作者:Kurt Marko
过于关注3D NAND闪存层数可能是一种误导
NAND非易失性闪存存储器作为存储行业的突破性革新已有多年发展历史,随着2D NAND容量达到极限,以及晶体管越来越小,NAND的编程时间变长,擦写次数变少,能够将内存颗粒堆叠起来的3D NAND应运而生,可以支持在更小的空间内容纳更高的存储容量,在需要存储海量数据的时代有着重大价值。
依托于先进工艺的3D NAND,氧化层越来越薄,面临可靠性和稳定性的难题,未来的3D NAND将如何发展?如何正确判断一款3D NAND的总体效率?
图片源自长江存储
在2020年的闪存峰会上,TechInsights高级技术研究员Joengdong Choe发表了相关演讲,详细介绍了3D NAND和其他新兴存储器的未来。TechInsights是一家对包括闪存在内的半导体产品分析公司。
3D NAND路线图:三星最早入局,长江存储跨级追赶
Choe介绍了2014-2023年的世界领先存储公司的闪存路线图,包括三星、铠侠(原东芝存储)、英特尔、美光、SK 海力士和长江存储等公司的3D NAND技术发展路线。
Choe给出的路线图显示,三星电子最早在3D NAND开拓疆土,2013年8月初就宣布量产世界首款3D NAND,并于2015年推出32层的 3D NAND,需要注意的是,三星将该技术称之为V-NAND而不是3D NAND。
之后,三星陆续推出48层、64层、92层的V-NAND,今年又推出了 128层的产品。
SK 海力士稍晚于三星,于2014年推出3D NAND产品,并在2015年推出了36层的3D NAND,后续按照48层、72层/76层、96层的顺序发展,同样在今年推出128层的3D NAND闪存。
美光和英特尔这一领域是合作的关系,两者在2006年合资成立了Intel-Micron Flash Technologies(IMFT)公司,并联合开发NAND Flash和3D XPoint。不过,两者在合作十多年之后渐行渐远,IMFT于2019年1月15日被美光以15亿美元收购,之后英特尔也建立起了自己的NAND Flash和3D XPoint存储器研发团队。
另外,在路线图中,长江存储于2018年末推出了32层的3D NAND,2020年推出了64层的3D NAND。
从路线图中可以发现,从90多层跨越到100多层时,时间周期会更长。
相较于其他公司,国内公司3D NAND起步较晚,直到2017年底,才有长江存储推出国产首个真正意义上的32层3D NAND闪存。不过长江存储发展速度较快,基于自己的Xtacking架构直接从64层跨越到128层,今年4月宣布推出128层堆栈的3D NAND闪存,从闪存层数上看,已经进入第一梯队。
近期,长江存储CEO杨士宁也在2020北京微电子国际研讨会暨IC World学术会议上公开表示,长江存储用3年的时间走过国际厂商6年的路,目前的技术处于全球一流水准,下一步是解决产能的问题。
值得一提的是,在中国闪存市场日前公布的Q3季度全球闪存最新报告中,三星、铠侠、西部数据、SK 海力士、美光、英特尔六大闪存原厂占据了全球98.4%的市场份额,在剩下的1.6%的市场中,长江存储Q3季度的收入预计超过1%,位列全球第七。
层数并非唯一的判断标准
尽管在各大厂商的闪存技术比拼中,闪存层数的数量是最直接的评判标准之一。
不过,Choe指出,大众倾向于将注意力集中在闪存层数上可能是一种误导 ,因为字线(带有存储单元的活动层)的实际数量会有很大的不同,例如可以将其他层作为伪字线,以帮助缓解由较高层数引起的问题。
Choe表示,判断3D NAND工作效率的一种标准是用分层字线的总数除以总层数,依据这一标准,三星的拥有最优秀的设计,不过三星也没有使用多个层或堆栈,不像其他厂商当前的闪存那样使用“串堆栈”。
一种提高3D NAND总体效率的方法是将CMOS或控制电路(通常称为旁路电路)放置在闪存层下面。这一方法有许多名称,例如CuA(CMOS-under-Array)、PUC (Periphery-Under-Cell), 或者 COP (Cell-On-Periphery)。
长江存储的设计有些特别,因为它有一些电路在闪存的顶部,而CMOS在连接到闪存之前,是在更大的工艺节点中制造的。Choe认为这种技术有潜力,但目前存在产量问题。
另外,各个公司使用工艺也不尽相同,比较典型的就是电荷撷取闪存技术(Charge trap flash,简称CTF)和传统浮栅存储器技术(Floating gate,简称FG)。
CTF使用氮化硅来存储电子,而不是传统FG中典型的掺杂多晶硅。具体而言,FG将电子存储在栅极中,瑕疵会导致栅极和沟道之间形成短路,消耗栅极中的电荷,即每写入一次数据,栅极电荷就会被消耗一次,当栅极电荷被消耗完时,该闪存就无法再存储数据。而CTF的电荷是存储在绝缘层之上,绝缘体环绕沟道,控制栅极环绕绝缘体层,理论而言写入数据时,电荷未被消耗,可靠性更强。
Choe指出在当前的存储芯片公司中,英特尔和美光一直使用的是传统的浮栅级技术,而其他制造商则依靠电荷撷取闪存设计 。美光直到最近发布176层才更换新的技术,英特尔的QLC在使用浮栅技术的情况下,可以保持更好的磨损性能,但这也会影响其闪存的耐用性、可靠性、可扩展性以及其他性能优势。
下一个十年将指向500层
Choe在演讲中提到,铠侠未来将用到的分离栅结构或分离单元结构技术也很有趣,它可以使存储器的密度直接增加一倍,并且由于分离单元结构的半圆形形状而拥有特别坚固的浮栅结构,具有更强的耐用性。
Choe预计,随着平台或堆栈数量的增加(目前最多为两个),闪存层数将继续增加,每个闪存芯片的存储量也会相应增加。Choe认为,这与其他技术,例如,硅通孔(TSV),叠层封装(PoP / PoPoP)以及向5LC / PLC的迁移一样,都在下一个十年指向500层以上和3 TB裸片。
另外,Choe详细说明了闪存的成本是按照每GB多少美分来计算的,这意味着未来3D闪存的架构将越来越便宜,不过2D闪存的价格依然昂贵,甚至比3D闪存贵很多倍。
谈到尖端闪存技术的推进,Choe认为尖端闪存总是首先进入移动和嵌入式产品,例如5G手机是当下的主要驱动力。他还指出,2D平面闪存仍然有一些应用市场,通常将其视为低延迟SLC用作3D XPiont的存储类内存(SCM)的替代品,如Optane或美光最近发布的X100,尽管X100在消费市场并不常见。
目前,100层以上的3D闪存产品,目前已经发布了SK 海力士128L Gold P31和三星128L 980 PRO,美光最近也基于176L flash发布了Phison E18的硬盘原型。另外,西部数据和铠侠的BiCS5和英特尔的144层产品将在明年发布。
更好的控制器需要更高密度的闪存,未来几年闪存将向更快和更大容量的方向发展。
本文编译自:https://www.tomshardware.com/news/techinsights-outlines-the-future-of-3d-nand-flash
雷锋网雷锋网雷锋网
相关问答
NAND 是什么元件?NAND闪存是一种比硬盘驱动器更好的存储设备。在不超过4GB的低容量应用中表现得尤为明显,随着人们持续追求功耗更低,重量更轻和性能更佳的产品,NAND被证明极具...
固态硬盘上的3D NAND 是什么?-ZOL问答3DNAND是相较于2DNAND而言的,而2DNAND其实也就是闪存颗粒,又称闪存,是一种非易失性存储器,即在断电的情况下依旧可以保存已经写入的数据,而且是以固定的区块...
为什么 闪存 类型显示 nand ?闪存类型显示NAND,是因为NAND闪存是一种特殊的闪存类型,它具有以下特点:1.高密度:NAND闪存的存储单元是由多个浮栅管和磷氧亚锡层组成的,因此它具有高密度...
NAND 类型?由于闪存的成本取决于其裸片面积,如果可以在同样的面积上存储更多数据,闪存将更具成本效益。NAND闪存有三种主要类型:单层单元(SLC)、多层单元(MLC)和三层单元...
什么是 NAND闪存 ?内存和NOR型闪存的基本存储单元是bit,用户可以随机访问任何一个bit的信息。而NAND型闪存的基本存储单元是页(Page)(可以看到,NAND型闪存的页就类似硬盘的扇...
固态硬盘 与非 固态硬盘有什么区别? - 傅了了 的回答 - 懂得固态硬盘使用闪存做储存介质,没有机械结构,普通硬盘使用一磁性圆盘做存储介质,中间有个马达,有机械结构。1、功耗上的区别固态硬盘的功耗上要低于...
NANDflash和NORflash的区别?因此,NANDflash适合用于大容量、低功耗、顺序读写的应用场景,如便携式设备中的存储卡、USB闪存盘等;而NORflash则适合用于小容量、高性能、随机读写的应用场...
nand闪存 不能低于多少纳米?从技术上讲,nand闪存不能低于20纳米。随着技术的不断发展,nand闪存的制程技术在近年来已经逐渐迈入了16nm、14nm甚至更小的节点。这是因为随着nand闪存芯片的...
nand 版本和emmc版本区别?1.nand版本和emmc版本有一些区别。2.nand版本是一种闪存技术,它使用了非易失性存储器来存储数据。它的读取速度相对较快,但写入速度较慢。而emmc版本则是一...
nand闪存 架构分为?主要分为slc,mlc,tlc在固态硬盘中,NAND闪存因其具有非易失性存储的特性,即断电后仍能保存数据,被大范围运用。根据NAND闪存中电子单元密度的差异,又可以分...