行情
HOME
行情
正文内容
nand flash工艺原理 「收藏」Flash闪存颗粒和工艺知识深度解析
发布时间 : 2025-01-23
作者 : 小编
访问数量 : 23
扫码分享至微信

「收藏」Flash闪存颗粒和工艺知识深度解析

[收藏] Flash闪存颗粒和工艺知识深度解析

原创: Hardy 架构师技术联盟 5天前

Wafer即晶圆,是半导体组件“晶片”或“芯片”的基材,从沙子里面高温拉伸生长出来的高纯度硅晶体柱(Crystal Ingot)上切下来的圆形薄片称为“晶圆”。采用精密“光罩”通过感光制程得到所需的“光阻”,再对硅材进行精密的蚀刻凹槽,继续以金属真空蒸着制程,于是在各自独立的“晶粒”(Die)上完成其各种微型组件及微细线路。对晶圆背面则还需另行蒸着上黄金层,以做为晶粒固着(Die Attach) 于脚架上的用途。

以上流程称为Wafer Fabrication。早期在小集成电路时代,每一个6吋的晶圆上制作数以千计的晶粒,现在次微米线宽的大型VLSI,每一个8吋的晶圆上也只能完成一两百个大型芯片。我们NAND Flash的Wafer,目前主要采用8寸和12寸晶圆,一片晶圆上也只能做出一两百颗NAND Flash芯片来。

NAND Flash Wafer

Wafer的制造虽动辄投资数百亿,但却是所有电子工业的基础。晶圆的原始材料是硅,而地壳表面有用之不竭的二氧化硅。二氧化硅矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达99.99%以上。晶圆制造厂再将此多晶硅融解,再在融液里种入籽晶,然后将其慢慢拉出,以形成圆柱状的单晶硅晶棒,由于硅晶棒是由一颗晶面取向确定的籽晶在熔融态的硅原料中逐渐生成,此过程称为“长晶”。硅晶棒再经过切段,滚磨,切片,倒角,抛光,激光刻,封装后,即成为集成电路工厂的基本原料——硅晶圆片,这就是“晶圆”。

下图是NAND Flash生产简要流程:

Die 就是芯片未封装前的晶粒,是从硅晶圆(Wafer)上用激光切割而成的小片(Die)。每一个Die就是一个独立的功能芯片,它无数个晶体管电路组成,但最终将被作为一个单位而被封装起来成为我们常见的闪存颗粒,CPU等常见芯片。

什么是ink Die

在晶圆制造过程中,会对Wafer中的每个Die进行严格测试,通过测试的Die,就是Good Die,未通过测试的即为Ink Die。这个测试过程完成后,会出一张Mapping图,在Mapping里面会用颜色标记出不良的Die,故称Ink Die。

Flash芯片封装分类

目前NAND Flash封装方式多采取TSOP、FBGA与LGA等方式,由于受到终端电子产品转向轻薄短小的趋势影响,因而缩小体积与低成本的封装方式成为NAND Flash封装发展的主流趋势。

TSOP: (Thin smaller outline package )封装技术,为目前最广泛使用于NAND Flash的封装技术,首先先在芯片的周围做出引脚,采用SMT技术(表面安装技术)直接附着在PCB板的表面。TSOP封装时,寄生参数减小,因而适合高频的相关应用,操作方便,可靠性与成品率高,同时具有价格便宜等优点,因此于目前得到了极为广泛的应用。

BGA: (Ball Grid Array也称为锡球数组封装或锡脚封装体 )封装方式,主要应用于计算机的内存、主机板芯片组等大规模集成电路的封装领域,FBGA 封装技术的特点在于虽然导线数增多,但导线间距并不小,因而提升了组装良率,虽然功率增加,但FBGA能够大幅改善电热性能,使重量减少,信号传输顺利,提升了可靠性。

采用FBGA新技术封装的内存,可以使所有计算机中的内存在体积不变的情况下容量提升数倍,与TSOP相比,具有更小的体积与更好的散热性能,FBGA封装技术使每平方英寸的储存量有很大的提升,体积却只有TSOP封装的三分之一,与传统TSOP封装模式相比,FBGA封装方式有加快传输速度并提供有效的散热途径,FBGA封装除了具备极佳的电气性能与散热效果外,也提供内存极佳的稳定性与更多未来应用的扩充性。

LGA: (Land Grid Array ) 触点陈列封装,亦即在底面制作有数组状态坦电极触点的封装,装配时插入插座即可,现有227 触点(1.27mm中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速逻辑 LSI 电路,由于引线的阻电抗小,对高速LSI 相当适用的,但由于插座制作复杂,成本较高,普及率较低,但未来需求可望逐渐增加。

Flash芯片封装叠Die(Stack Die)

由于NAND Flash单颗Die的容量有限,为了实现更高的容量,需要在一个封装片内堆叠几个Die。在Wire Bond的时候,用金线互连。

目前单颗Die的容量最高的为Micron公司的MLC 4GB,目前最先进的堆叠技术可以叠8层,因此理论上MLC单颗封装片可以做到32GB。Micron公司计划在09年Q4推出此容量的封装片。

Flash芯片TSOP封装和BGA封装的内部结构

TSOP封装只需要一个引脚框架,把NAND FLASH Die的Pad打线(Wire Bond)连接到引进框架上面即可。封装技术简单,成本低。但其打线方式只能从两边打线,因此stack die就比较困难。

BGA封装与TSOP封装不同在于其采用了Substrate,用电路板来对引脚走线,因此可以进行四面打线,这样在进行叠die的时候,就变得更加容易操作。但成本会比TSOP要高。

Flash芯片封装的尺寸,一些封装方式尺寸比较:

NAND Flash出货有两种产品样式:

一种是Wafer,即晶圆出货,这种产品样式一般客户采购回去需要再测试和COB封装等,这种客户多为闪存卡大客户。

一种是封装片出货,NAND Flash目前最普遍采用的是48TSOP1的封装方式,现货市场均为TSOP的封装片。

NAND Flash按工艺可分为SLC与MLC

SLC英文全称(Single Level Cell)即单层式单元储存。SLC技术特点是在浮置闸极与源极之中的氧化薄膜更薄,在写入数据时通过对浮置闸极的电荷加电压,然后透过源极,即可将所储存的电荷消除,通过这样的方式,便可储存1个信息单元,这种技术能提供快速的程序编程与读取,不过此技术受限于Silicon efficiency的问题,必须要用较先进的流程强化技术,才能向上提升SLC制程技术。

MLC英文全称(Multi Level Cell)即多层式单元储存。Intel在1997年9月最先开发成功MLC,其作用是将两个单位的信息存入一个Floating Gate(闪存存储单元中存放电荷的部分),然后利用不同电位(Level)的电荷,通过内存储存的电压控制精准读写。MLC通过使用大量的电压等级,每一个单元储存两位数据,数据密度比较大。SLC架构是0和1两个值,而MLC架构可以一次储存4个以上的值。因此,MLC架构可以有比较高的储存密度。

TLC英文全称(Triple Level Cell)即一个单元可以存储单元可以存储3bit,因此需要8个等级的电位进行编码解码才能实现。其实TLC是属于MLC的一种。

SLC和MLC的基本特性表

Flash坏块的形成

NAND Flash的存储原理是,在写入(Program)的时候利用F-N隧道效应(Tunnel Injection隧道注入)的方法使浮栅充电,即注入电荷;在擦除(Erase)的时候也是是利用F-N隧道效应(Tunnel Release隧道释放)将浮栅上的电荷释放。

隧道注入和隧道释放的产生都需要十几伏的瞬间高电压条件,这对浮栅上下的氧化层会造成一定损伤,因此这样重复的操作(P/E Cycle)是有限的。SLC大概是100K次,MLC大概是10K次。达到读写寿命极限的时候存储单元就会出现失效,然后就会造成数据块擦除失效,以及写入失效,于是就会被标记起来,作为坏块,并将这个标记信息存放在Spare Area里面,后续操作这个Block时,需要Check一下这个信息。

Flash固有坏块

由于制造工艺的原因,通常普通的NAND FLASH从出厂开始就有坏块了,一般在2‰以下。一般芯片原厂都会在出厂时都会将坏块第一个page的spare area的第6个byte标记为不等于0xff的值。

NAND Flash的存储单元是有使用寿命的

NAND Flash的存储原理是,在写入(Program)的时候利用F-N隧道效应(Tunnel Injection隧道注入)的方法使浮栅充电,即注入电荷;在擦除(Erase)的时候也是是利用F-N隧道效应(Tunnel Release隧道释放)将浮栅上的电荷释放。隧道注入和隧道释放的产生都需要20V左右瞬间高电压条件,这对浮栅上下的氧化层会造成一定损伤,因此这样重复的操作(P/E Cycle)是有限的。SLC大概是100K次,MLC大概是10K次。

三星估算的SSD硬盘的寿命

如果每天对SSD写入4.8GB的数据,假设SSD总容量为16GB,那么,你至少需要3.34天才能对整个SSD的每个单元擦写一次;如果此SSD为擦写次数为100K的SLC单元,那么,你至少需要3.34×100K天才能使这个SSD完全失效;3.34×100K天=913年,因此16G的SSD可以使用913年 。那么,如果是MLC的话,也至少可以使用91.3年。

晶圆制程工艺发展历史

芯片制程工艺是指晶圆内部晶体管之间的连线间距。按技术述语来说,也就是指芯片上最基本功能单元门电路和门电路间连线的宽度。

主流厂商的晶圆制程工艺以及下一代制程工艺的情况,如下表。

芯片制造工艺在1995年以后,从0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米、90纳米、75纳米、65纳米一直发展到目前最新的34纳米。

一步步印证了摩尔定律的神奇。以90纳米制造工艺为例,此时门电路间的连线宽度为90纳米。我们知道,1微米相当于1/60头发丝大小,经过计算我们可以算出,0.045微米(45纳米)相当于1/1333头发丝大小。可别小看这1/1333头发丝大小,这微小的连线宽度决定了芯片的实际性能,芯片生产厂商为此不遗余力地减小晶体管间的连线宽度,以提高在单位面积上所集成的晶体管数量。采用34纳米制造工艺之后,与65纳米工艺相比,绝对不是简单地令连线宽度减少了31纳米,而是芯片制造工艺上的一个质的飞跃。

目前最先实现34nm工艺的是Intel和Micron联合投资的IM,此技术被最先应用在了NAND FLASH上面,可见NAND FLASH的制程工艺跳跃是所有IC中最快的。

晶圆技术的发展都是受生产力驱动,必须向更小的制程间距和更大的晶圆尺寸发展。制程从2.0um、0.5um、0.18um、90nm一直到目前的34nm,晶圆尺寸从最初的5英寸发展到目前的12英寸,每次更迭都是一次巨大的技术跳跃,凝聚了人类科技的结晶,也一次次印证了摩尔定律的神奇。

晶圆尺寸的大约每9年切换一次。而晶圆制程由最初的几年更迭一次,到目前的基本上每年都能更迭一次。

更多内容和“闪存技术、产品和发展趋势全面解析”全面的闪存技术电子书,请点击“了解更多”查阅。

NAND Flash浮栅晶体管的结构、工作原理及其局限性

作为最为常见的存储芯片,NAND Flash已经被广泛采用,特别是在消费类电子产品当中,因此,在其存储密度不断提升的同时,成本也越来越敏感。由于Flash闪存的成本取决于其芯片面积,如果可以在同一区域存储更多数据,Flash将更具成本效益。NAND闪存主要有三种类型:Single Level Cell(SLC),Multi Level Cell(MLC)和Triple Level Cell(TLC)。顾名思义,TLC Flash在与MLC相同的区域中存储的数据更多,同理,MLC存储的数据多于SLC。另一种类型的NAND闪存称为3D NAND或V-NAND(垂直NAND),其通过在同一晶片上垂直堆叠多层存储器单元,这种类型的闪存实现了更大的密度。 浮栅晶体管 闪存将信息存储在由浮栅晶体管组成的存储单元中。为了更好地理解不同类型的NAND闪存,让我们来看看浮栅晶体管的结构、工作原理及其局限性。 浮栅晶体管或浮栅MOSFET(FGMOS)非常类似于常规MOSFET,区别在于它在栅极和沟道之间具有额外的电绝缘浮栅。由于浮栅是电隔离的,所以即使在去除电压之后,到达栅极的电子也会被捕获。这就是闪存非易失性的原理所在。与具有固定阈值电压的常规MOSFET不同,FGMOS的阈值电压取决于存储在浮栅中的电荷量,电荷越多,阈值电压越高。与常规MOSFET类似,当施加到控制栅极的电压高于阈值电压时,FGMOS开始导通。因此,通过测量其阈值电压并将其与固定电压电平进行比较来识别存储在FGMOS中的信息,被称为闪存中的读操作。 可以使用两种方法将电子放置在浮动栅极中:Fowler-Nordheim隧穿或热载流子注入。对于Fowler-Nordheim隧穿,在带负电的源极和带正电的控制栅极之间施加强电场。这使得来自源极的电子隧穿穿过薄氧化层并到达浮栅。隧穿所需的电压取决于隧道氧化层的厚度。利用热载流子注入,高电流通过沟道,为电子提供足够的能量以穿过氧化物层并到达浮动栅极。 通过在控制栅极上施加强负电压并在源极和漏极端子上施加强正电压,使用福勒 - 诺德海姆隧道效应可以从浮栅移除电子。这将导致被捕获的电子通过薄氧化层回到隧道。在闪存中,将电子放置在浮动栅极中被认为是编程/写入操作,去除电子被认为是擦除操作。 隧道工艺有一个主要缺点:它会逐渐损坏氧化层。这被称为闪存中的磨损。每次对单元进行编程或擦除时,一些电子都会卡在氧化层中,从而磨损氧化层。一旦氧化层达到不再能够在编程和擦除状态之间进行可靠性区分的点,则该单元被认为是坏的。由于读取操作不需要隧穿,因此它们不会将单元磨掉。这就是为什么闪存的寿命表示为它可以支持的编程/擦除(P / E)周期的数量。SLC闪存 在SLC闪存中,每个存储单元仅存储一位信息:逻辑0或逻辑1.单元的阈值电压与单个电压电平进行比较,如果电压高于电平,则该位被视为逻辑0。反之则为逻辑1。 由于只有两个级别,因此两个级别之间的电压裕度可能非常高。这使得读取单元格更容易,更快捷。原始误码率(RBER)也很低,因为由于较大的电压余量,在读取操作期间泄漏或干扰的影响较小。低RBER还减少了给定数据块所需的ECC位数。 大电压裕量的另一个优点是磨损的影响相对较小,因为微小的电荷泄漏具有相对较低的影响。每个逻辑电平的更宽分布有助于以更低的电压对单元进行编程或擦除,这进一步增加了单元的耐久性,进而增加了寿命,即P / E循环的数量。 同时也有一个缺点,就是与在相同芯片区域中存储更多数据的其他类型的Flash相比,每个单元的成本更高。SLC闪存通常用于对成本不敏感且需要高可靠性和耐用性的场合,例如需要大量P / E循环次数的工业和企业应用。MLC闪存 在MLC闪存中,每个存储器单元存储两位信息,即00,01,10和11,在这种情况下,阈值电压与三个电平进行比较(总共4个电压带)。 通过更多级别进行比较,读取操作需要更加精确,与SLC Flash相比,读取速度更慢。由于较低的电压余量,原始误码率(RBER)也相对较高,并且给定数据块需要更多的ECC比特。现在磨损的影响更为显着,因为与SLC闪存相比,任何电荷泄漏都会产生更大的相对影响,从而减少寿命(P / E循环次数)。 由于需要仔细编程以将电荷存储在每个逻辑电平所需的紧密窗口内,因此编程操作也要慢得多。其主要优点是每比特成本更低,比SLC闪存低2~4倍。MLC闪存通常用于成本更敏感的应用,例如消费电子或游戏系统,其性能、可靠性和耐用性不是那么关键,并且所需的P / E循环次数相对较低。企业级多单元(eMLC)闪存 MLC闪存的低可靠性和耐用性使它们不适合企业应用,而低成本是一个驱动因素。为了带来更低成本的优势,闪存制造商创建了一种优化级别的MLC闪存,具有更高的可靠性和耐用性,称为eMLC。eMLC中的数据密度通常会降低,从而提供更好的电压余量以提高可靠性。较慢的擦除和编程循环通常用于减少磨损的影响并提高耐用性。还有许多其他技术可以提高eMLC的可靠性和耐用性,这些技术因制造商而异。TLC闪存 在TLC Flash中,每个存储器单元存储3位信息。现在将阈值电压与7个电平(总共8个电压带)进行比较。与SLC Flash相比,TLC的读取操作需要高度精确且速度慢。原始误码率也很高,增加了对给定数据块的更多ECC位的需求。磨损的影响也被放大,大大减少了寿命(P / E循环次数)。编程操作也较慢,因为电压需要精确以将电荷存储在每个逻辑电平所需的窗口内。 TLC的优势在于每比特的最低成本,与SLC或MLC闪存相比要低得多。TLC闪存用于高成本敏感型应用,对P / E循环的需求较少,例如消费类应用。SLC,MLC,eMLC和TLC的比较 表1给出了假设类似光刻工艺的不同类型闪存的主要参数的比较。这些值仅表示比较性能,并且就特定存储器产品而言可能不准确。

表1:每种不同类型Flash的主要参数的比较。 * ECC位数取决于制程节点; 较小的制程节点需要更多的ECC位。 3D NAND Flash 上面讨论的所有不同的闪存都是二维的,意味着存储单元仅布置在芯片的XY平面中。使用2D闪存技术,在同一晶圆中实现更高密度的唯一方法是缩小制程工艺节点。其缺点是,对于较小的节点,NAND闪存中的错误更为频繁。另外,可以使用的最小制程工艺节点存在限制。 为了提高存储密度,制造商开发了3D NAND或V-NAND(垂直NAND)技术,该技术将Z平面中的存储单元堆叠在同一晶圆上。以这种方式构建有助于为相同的芯片区域实现高位密度。在3D NAND闪存中,存储器单元作为垂直串连接而不是2D NAND中的水平串。 第一批3D Flash产品有24层。随着该技术的进步,已经制造出32,48,64甚至96层3D闪存。3D闪存的优势在于同一区域中的存储单元数量明显更多。这也使制造商能够使用更大的制程工艺节点来制造更可靠的闪存。 3D Flash的另一个主要技术转变是使用电荷阱Flash而不是浮栅晶体管。除了用氮化硅膜代替浮栅之外,电荷阱在结构上类似于FGMOS。注意,由于大规模制造的困难,电荷阱在市场上没有被广泛使用。由于难以制造浮栅晶体管的垂直串以及电荷阱的其他固有优点,已经采用电荷阱技术用于3D闪存。 与FGMOS相比,基于电荷阱的存储器有许多优点。可以在较低电压下编程和擦除基于电荷阱的存储器,从而提高耐用性。由于捕获层(氮化物)是绝缘层,电荷不会泄漏,从而提高了可靠性。由于电荷不会从电荷阱的一侧流到另一侧,因此可以在同一阱层存储多于一位的电荷。赛普拉斯(前Spansion)在NOR闪存中有效地利用了这种功能,称为MirrorBit技术,将两位数据存储在一个类似于MLC闪存的单个存储单元中。未来的趋势 所有主要的闪存制造商都积极致力于开发不同的方法,以降低每比特闪存的成本,同时正在积极研究增加3D NAND Flash中垂直层的数量。虽然15nm似乎是目前NAND闪存中最小的成功节点,但Flash的光刻节点的缩小仍在继续。将MLC和TLC技术与3D NAND闪存相结合的方法也正在积极探索当中,许多制造商已经看到了成功的曙光。随着新技术的出现,我们可能很快就会看到存储单元可以存储一个字节的数据和垂直层,达到256层,甚至更高

相关问答

NANDflash 和NORflash的区别?

1、存储架构不同NORFlash架构提供足够的地址线来映射整个存储器范围。这提供了随机访问和短读取时间的优势,这使其成为代码执行的理想选择。另一个优点是100%...

flash 的硬件 原理 ?

Flash的硬件实现机制Flash的内部存储是MOSFET,里面有个悬浮门(FloatingGate),是真正存储数据的单元。在Flash之前,紫外线可擦除(uv-erasable)的EPROM...

spi flash 工作 原理 ?

SPIflash是一种片外扩展存储的方法。主机与flash芯片采用SPI(SerialPeripheralInterface串行外设接口)总线进行通信。因为norflash是数据串行通信,而...

什么是闪镀镍?

闪镀镍(FlashNickelPlating)是一种电镀工艺,用于在金属表面形成一层薄的镍涂层。它是一种快速的电镀方法,通常用于提供金属表面的保护、改善外观或增加导电...

Flash 插件是干嘛用的 - 懂得

这个问2113题较比抽象,对于楼主的提问,5261首先,flash插件可以理解为两种,一4102种是为flash本身这个软件提1653供额外功能的扩展包,一种是用于提供...

flashdb存储 原理 讲解?

flashdb存储原理是在原有的晶体管上加入了浮动栅和选择栅在源极和漏极之间电流单向传导的半导体上形成贮存电子的浮动棚。浮动栅包裹着一层硅氧化膜绝缘体。...

qspi 原理 ?

QSPI是一种专用的通信接口,连接单、双或四(条数据线)SPIFLASH存储器。QSPI特点支持三种工作模式:间接模式、状态轮询模式和内存映射模式支持...

flash 初始化 原理 ?

Flash初始化原理是指在开机或重启过程中,系统对Flash存储器进行初始化操作的原理。Flash初始化的过程涉及到多个步骤和操作。1.Flash初始化是必要的。2.F...

什么是视频播放器加速器?它的 原理 是什么?

加速器的原理其实挺简单,就是P2P下载,先在你的IE里设置PAC自动代理,然后加速器通过代理脚本发现你是否正连接到一个视频,然后截获它,使原本通过FLASH来缓冲...

有推荐视频剪辑的教学视频的吗,最好免费的,谢谢?

Halo,我是威威一笑。其实我也是过新手期30天,目前在西瓜视频做vlog领域。我觉得如果你想学视频剪辑的话,可以参考下面的几个账号。因为西瓜视频本身就有很多...

 王思聪百科  星光大道玖月奇迹 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2025  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部