我们熟知的NAND闪存,还有个“双胞胎兄弟”
【IT168 评论】无论消费者还是企业机构,大多数人在谈到闪存时,首先想到的就是NAND闪存。从一定的现实意义上来讲,NAND闪存可以说已经成为固态硬盘的代名词。基于块寻址结构和高密度,使其成为磁盘的完美替代品。
NOR闪存是另一种与NAND不同的闪存类型,它具有不同的设计拓扑结构,某些特定的应用场景下更为适合。在比较NAND和NOR闪存在不同应用中的相对优势和适用性之前,检查其结构差异是很重要的。
NAND闪存产品是当今已经达到高水准的存储芯片,是当前市面上嵌入式以及独立式SSD的主要原材料。多层单元(MLC)技术和3D制造工艺的结合,将NAND存储单元垂直蚀刻到硅衬底上,使存储密度和NAND芯片容量呈几何级增长。
NAND与NOR电路基础
尽管NAND闪存是这两种非易失性内存技术中相对流行的一种,但NAND和NOR都是由同一名东芝公司的工程师在上世纪80年代中期发明的。要理解这两个种类的区别和命名,需要简要回顾一下逻辑门的基础知识。
NAND和NOR分别涉及到布尔逻辑函数中的逻辑“和”(and)以及“或”(or)。如下所示,NAND和NOR都生成响应两个二进制输入的输出。
响应两个二进制输入的NAND和NOR输出
NAND和NOR逻辑门仅仅为它们各自的功能实现了上面这个真值表。
NAND门在概念上是作为AND门实现的——当两个输入都是1时输出1——后面跟着一个NOT门,这是一个逻辑反转。相应的,NOR门在概念上是一个OR门——有任何一个输入是1时输出1,然后是NOT门,这是一个逻辑倒装。
布尔逻辑的背景对于理解NAND和NOR闪存至关重要,因为闪存单元被连接到一个行和列的数组中。在NAND闪存中,一组中的所有单元(通常是一个字节的倍数,取决于芯片的大小)共享一条位线,并以串行方式连接每个单元,每个单元连接到一个单独的字行。同一字行连接一个内存块中的多个字节,通常为4 KB到16 KB。因此,只有当所有的字线都是高或单状态时,位线才会降低或变为零状态,这实际上将内存组转换为一个多输入NAND门。
与此相反,NOR闪存并行组织位线的方式是,当位线和字线都处于低或零状态时,内存单元只保持高或单状态。
NAND单元的串联结构使得它们可以通过导电层(或掺杂层)连接在衬底上,而不需要外部接触,从而显著减少了其横截面积。
NAND闪存单元的串联连接意味着它们不需要单元之间通过金属层进行外部接触——而这正是NOR拓扑结构所需的。使用导电层连接硅衬底上的单元意味着NAND闪存的密度通常比NOR高两个数量级,或100倍。此外,组内单元的串联连接使它们可以垂直地堆积在3D数组中,位线类似于垂直管道。
相反,由于NOR闪存单元不能单独寻址,因此它们对于随机访问应用程序更快。
NAND与NOR产品类型
这两种类型的闪存具有明显的特性和性能差异,它们有各自最适合的应用程序类型。除了容量外,NAND和NOR闪存还具有不同的运行、性能和成本特性,如下图所示。
这两种闪存中也有几种不同的产品类型,它们在I/O接口、写入持久性、可靠性和嵌入式控制功能方面有所不同。
NAND闪存产品类型
NAND闪存以单层(SLC)、多层(MLC)、三层(TLC)或四层(QLC)的形式在每个单元(cell)中存储bit,分别为1 bit/cell、2 bit/cell、3 bit/cell、4 bit/cell。要确定哪种类型的NAND最适合于工作负载,简单来说,每个单元的位数越高,其容量就越大——当然,是以数据持久性和稳定性为代价的。
NAND设备只是没有任何外围电路的存储芯片,这些外围电路使NAND闪存可以在SSD、U盘或其他存储设备中使用。相比之下,托管型NAND产品嵌入了一个内存控制器来处理必要的功能,比如磨损调平、坏块管理(从使用中消除非功能性内存块)和数据冗余。
NOR闪存产品类型
串行设备通过只暴露少量(通常是1到8个)I/O信号来减少包的pin数。对于需要快速连续读取的应用程序来说,这是理想的选择。NOR闪存通常用于瘦客户机、机顶盒、打印机和驱动器控制器。
并行NOR产品暴露多个字节,而且通常使用内存页而不是单独的字节进行操作,更适用于启动代码和高容量应用程序,包括数码单反相机、存储卡和电话。
两种闪存都是不可或缺的
NAND是闪存的主力,广泛用于嵌入式系统和SSD等存储设备的大容量数据存储。不过,NOR 闪存在存储可执行的启动代码和需要频繁随机读取小数据集的应用程序方面起着关键作用。显然,这两种类型的闪存将继续在计算机、网络和存储系统的设计中发挥作用。
原文作者:Kurt Marko
4D闪存+176层,SK Hynix做到了
继美光之后,SK海力士宣布完成了业内首款多堆栈176层4D闪存的研发,容量512GB/64GB,TLC。SK海力士透露,闪存单元架构为CTF(电荷捕获),同时集成了PUC技术。公司将样品提供给controller公司去制作解决方案产品
海力士一直在推广96层NAND Flash产品中的4D技术,该产品将电荷阱闪存(CTF)与高集成度Peri相结合,并采用单元(PUC)技术。新的176层NAND闪存是第三代4D产品,从制造上来说,其能够确保业内最佳的每片晶圆产出。与上一代相比,除了容量增加35%,它采用2分裂单元阵列选择技术后,单元的读取速度比上一代提高了20%,在不增加进程数量的情况下,采用加速技术的数据传输速度也提高了33%,达到1.6Gbps。
对于移动解决方案产品,最大读取速提高了70%,最大写入速提高了35%,SK海力士计划在明年年中发布消费者和企业SSD,从而扩大产品的应用市场。
从技术层面来讲,NAND闪存层数的增加,会导致电池电流减少,沟道孔扭曲,以及由于双叠层未对准而引起的单元分布恶化。SK海力士通过采用创新技术,如单元层间高度降低、层变量定时控制和超精密对准,克服了这些挑战,并开发了行业顶级176层NAND闪存。
SK海力士还计划通过在176层4D NAND的基础上开发双倍密度的1Tb产品,以不断增强其在NAND闪存业务上的竞争力。
根据市场情报提供商Omdia的数据,NAND闪存市场预计将从2020年的4318亿GB扩大到2024年的1.366万亿GB,复合年增长率为33.4%。
4D NAND
2018年SK海力士推出96层512Gb的基于CTF(Charge Trap Flash, 电荷捕获型闪存)的4D NAND闪存。这款产品基于TLC(Triple-Level Cell,三层单元)阵列,采用3D CTF设计和PUC(Peri. Under Cell)技术。这是SK海力士在业内首次将3D CTF与PUC相结合,这与结合3D浮栅与PUC的方式不同。其结果,前者获得了业界最好的性能和生产效率。公司将该产品命名为“基于CTF的4D NAND闪存”,以区别于当前的3D NAND闪存技术。
电荷阱闪光灯(CTF)
与浮栅将电荷存储在导体中不同,CTF将电荷存储在绝缘体中,消除了电池之间的干扰,提高了读写性能,同时与浮栅技术相比,减少了单位电池面积。在CTF架构中,没有浮栅,数据被临时存放在闪存内由氮化硅成的非传导层,也就是所谓的保持室(Holding Chamber)中,从而可以获得更高等级的可靠性与更好的存储电路的控性。大多数3D NAND公司正在采用CTF。
PUC技术
这是一种通过在电池阵列下放置外围电路而使生产效率最大化的技术。那SK海力士的4D NAND与竞争“对手”3D NAND的区别是什么呢?SK海力士称其结合了自身CTF设计与Periphery Under Cell(PUC)技术。简单来说,3D闪存由阵列和外围电路两个主要组件组成。与传统3D NAND相同,SK海力士的阵列是垂直堆叠的层用于存储数据,而外围电路排列在单元边缘。由电路控制阵列,但随着NAND层的增加,它就会消耗芯片空间,增加复杂性与尺寸大小,由此增加产品的最终成本。
为了解决这一问题,SK海力士的4D NAND采用了PUC设计,将外围电路放置在阵列之下而不是围绕,来提高存储密度,同时降低成本。然而,这与英特尔和美光首次推出第一代3D闪存设计相同,那边称之为“CMOS under Array”(CuA)。并且,三星也已经宣布其将来会转向CuA型设计,因此这绝不能算是新技术了。
2分单元阵列选择技术(2-division cell array selection technology)
字线在NAND闪存电路中向电池施加电压。层数越多,字线越薄,就会降低细胞的高度,对字线的电阻越大,就会影响速度。通过将连接字线的电池与现有的电池相比分成两部分,可以降低电阻,从而缩短施加电压的时间,提高读取速度。
电池层间高度降低技术
随着层数的增加,通过钻孔形成存储单元就会变得困难。这导致电阻增加,电流减少,难以保证性能和可靠性。为此,这就需要尽可能降低单元间层的高度,但这会增加单元间的干扰和缺陷率。电池层间高度降低技术不仅大幅降低了176层的电池层间高度,而且通过相关工艺和设计技术确保了具有竞争力的性能/可靠性。
层变定时控制技术
增加层数和降低层高往往会导致通道孔扭曲和单元散射恶化,从而降低每一层的性能和可靠性。该技术根据每层的特性调整施加电压的数量和时间,以保持均匀的电池特性,提高了性能和可靠性。
超精密定位技术
由于随着层数的增加,不可能一次钻出用于单元形成的孔,所以使用两次钻出孔的双堆叠工艺。双堆叠技术的核心是使堆叠误差最小化。如果堆栈没有正确对齐,将导致堆栈之间的电流流动不顺畅,并发生恶化,降低成品率、性能和可靠性。SK海力士自2017年推出72层的产品以来,就一直在使用双堆叠技术,对176层产品进行了改进,并基于自身的专业知识,实时自动校正孔的位置和尺寸。
存储厂商们各自努力,176层顶峰见实力
在全球NAND市场份额中,虽然美光排在第七位,但是在堆叠能力方面,美光却毫不逊色。美光是第一家发布176层3D NAND的存储厂商,其第五代3D NAND闪存是176层构造,这也是自美光与英特尔的存储器合作解散以来推出的第二代产品。2020年11月9日,美光宣布将批量发售世界上第一个176层3D NAND。
据美光官网介绍,该176层NAND采用了独特的技术,替换门架构将电荷陷阱与CMOS阵列下(CuA)设计相结合,与同类最佳竞争产品相比,其die尺寸减小了约30%。
三星电子作为全球NAND领导者,占有33.8%的市场份额,如果三星想在很长一段时间内保持这一头把交椅,就必须始终走在前面。三星电子计划在2021年上半年大规模生产具有170层或更多层的第七代V-NAND闪存,并将使用字符串堆叠方法,结合两个88L模具,新芯片还将采用“双栈”技术。行业观察家表示,由于三星电子改变了其堆叠方法,该产品的发布已被推迟。
铠侠也没闲着,值得一提的是,NAND闪存由东芝于1987年首次提出的。今年10月,铠侠表示,铠侠将在日本中部三重县的四日市工厂内建立一个新的1万亿日元(95亿美元)工厂,以提高其尖端NAND闪存的产量,因为他们的目标是满足5G增长推动的不断增长的需求网络。这项投资将与美国合作伙伴Western Digital进行。该工厂将从明年春季开始分两个阶段进行建设。这家占地40,000平方米的工厂将是铠侠最大的工厂。
英特尔也谈到了他们的3D NAND技术。早在2019年9月于韩国首尔举行的英特尔存储日上,英特尔宣布他们将跳过业界大多数人正在开发的128层NAND闪存节点,并将直接跳到144层。
西部数据于今年1月份宣布,它已经成功开发了其第五代3D NAND技术BiCS5,BiCS5设计使用112层,而BiCS4使用96层。
长江存储进步非凡,他们坚持创新发展,走差异化的路线,于2018年7月正式推出自家的独门绝技Xtacking®架构。传统3D NAND架构中,外围电路约占芯片面积的20~30%,降低了芯片的存储密度。随着3D NAND技术堆叠到128层甚至更高,外围电路可能会占到芯片整体面积的50%以上。Xtacking®技术将外围电路置于存储单元之上,从而实现比传统3D NAND更高的存储密度。2020年4月,长江存储抢先推出了128层QLC 3D NAND闪存芯片X2-6070。目前长江存储的技术已经处于全球一流的水准,下一步就是解决产能的问题。
相关问答
soc有哪几种架构?系统芯片(SOC)架构-AviralMittalSystemonChipArchitecture-AviralMittal此技术是在设计片上系统时考虑体系结构级别的因素。同样,范围是围...
74ac00a是什么芯片?74AC00A是一款数字逻辑门芯片,属于74系列数字集成电路。它包括四个二输入NAND门,采用AC技术,具有低功耗和高速操作的特点。该芯片能够实现数字信号的与非逻辑...
E4421怎么输出方波?你可以使用旋钮或按键输入特定频率值。4.设置幅度。幅度表示方波的电压峰值大小。你可以使用旋钮或按键输入特定的幅度值。5.连接发生器的输出到你想要观察...
组合电路的一般分析方法?6.验证和简化:验证输出值是否符合预期,检查电路连接是否正确。如果需要,进行逻辑化简来简化电路结构,减少逻辑门的数量。需要注意的是,组合电路的分析方...
为什么三星能操纵DRAM、 NAND 、屏幕的价格没人能管得了?因为我们的国家出手了,近日,发改委对三星进行约谈。虽然我们不清楚约谈的内容以及是否对三星提起反垄断调查,但,我们可以预见,国产存储将迎来腾飞的春天。...此...
逻辑或和逻辑与非,英语怎么翻译?_作业帮[回答]我是在逻辑电路里学到的...与非就是与门和非门的叠加.或,与,非是基本逻辑算法.翻译为logicorandlogicNAND吧应该..我是在逻辑电路里学到的...
与或非 门 有运算口诀吗?与或非逻辑运算口诀如下:1、与:and的口诀是有0出0,全1出1。例如:1,1=1;1,0=0;0,1=0;0,0=0。2、或:or的口诀是有1出1,全0出0。例如:1,1=1;1,0=...与...
固态硬盘3D颗粒是什么?有什么区别呢?-ZOL问答您说的3D颗粒应该是指“3DNAND闪存堆叠技术”,它是一种芯片封装技术,并非颗粒!接下来带大家一起了解一下“3DNAND闪存堆叠技术“。NADA闪存NAND闪存颗粒...
为什么利润暴涨的手机闪存厂商都在韩国?简单来说,闪存就是我们常说的手机中的“ROM”,断电依然能保存数据。3DNAND闪存相比传统2DNAND,通过颗粒堆叠,增加了提高了性能和容量。2016年第四季度,三...
在座的资深人士!可不可以告诉我 株洲晶体管公司,晶体管哪...[回答]静态CMOS逻辑非门:源极与VDD相连的是PMOS,源极与GND相连的是NMOS。下面是非门中两个MOSFET的U-I曲线,从中可看出非门的静态电压传输特性(VTC):下面...