行情
HOME
行情
正文内容
nand ecc bch 浅谈3D-NAND,QLC和SCM介质技术和新产品
发布时间 : 2024-11-24
作者 : 小编
访问数量 : 23
扫码分享至微信

浅谈3D-NAND、QLC和SCM介质技术和新产品

Hardy 架构师技术联盟

NAND Flash技术的发展完全沿着技术演进、商业价值和需求匹配的车辙在不断行驶。诸如SRAM,DRAM,EEPROM等 产品和技术。在每个存储器单元存储一位的二进制数据的NAND Flash 技术被称为单级单元(SLC)。但是由于SLC在容量和价格等原因,促使MLC、eMLC及TLC这三种闪存颗粒 迅速发展起来,关于Flash颗粒介绍请参考文章“闪存技术最全面解析”。

NAND Flash在应用普及和全面替换HDD遇到最直接的一个问题还是价格,从SLC、MLC到TLC一直才寻求价格的平衡点,尽管TLC能够解决SSD容量瓶颈,却还是不能完全解决SSD价格的难题。大容量SSD仍旧昂贵,小容量SSD+大容量便宜HDD的混合存储解决方案也层出不穷,但在体验上终究没有单纯大容量SSD来得好。目前来看,TLC还是相对来说在性能和价格方面平衡不错的方案,再说随着容量的增加、技术的改善,TLC闪存的擦写次数逐渐等到优化,也并没有想象中那么容易失效

结合实际应用发现,SSD在处理数据写入时,每次都写到新的物理地址,从而使得所有的闪存物理空间被均匀使用。假设一块600GB的SSD,其闪存介质写次数为1万次,那么该SSD可以写入的数据总量达到6PB(600GB*10000);在实际企业级环境中的硬盘,整个生命周期的写入数据总量远小于200TB,这意味着这块600GB的SSD使用10年以上。

技术永远无法脱离实际应用,TLC颗粒在3D-NAND Flash的产品应用非常广泛,先后出现了32,64,72,96层的基于TLC的3D NAND Flash产品 ,起初这些TLC产品只要应用在消费级产品,但目前很多存储厂商已经把TLC颗粒引入企业级存储产品。下面我们看看主流3D-NAND Flash厂商(三星、东芝、WD和SK Hynix 四大厂商)的新产品和动态。

东芝(Toshiba)携手SanDisk 研发出全球首款采用堆栈 96 层制程技术的TLC 3D NAND Flash 产品,且已完成产品试作。该款堆栈 96 层的 3D NAND试制品单颗芯片容量为 256Gb(32GB),预计于 2017 年下半年送样、2018 年开始进行量产,主要用来抢攻数据中心用 SSD和PC桌面SSD等市场。

三星在 3D NAND Flash一直处于领先地位,在去年就发布64 层 3D NAND 。但前不久SK Hynix 推出第四代 72 层的 3D NAND 进入量产,主要用于行动设备,并已交货给客户。韩国对3D NAND Flash技术和市场的控制力是不容忽视的。

Intel发布了新一代SATA SSD 545s产品 ,采用64层堆叠闪存的SSD取代去年的SSD 540s,当时Intel自己的3D堆叠闪存技术还不成熟,所以采用了SK海力士的16nm TLC和慧荣主控SM2258。SSD 545s采用的是Intel第二代3D TLC闪存颗粒(Intel的第一代3D闪存是32层堆叠),64层堆叠设计,具有浮动栅极存储单元,单颗容量256Gb(32GB)。SSD 545s的主控采用了升级版慧荣主控SM2259,加入了对端到端数据保护和ECC的支持(主控SRAM和外部DRAM均有),同时搭配Intel定制固件 。支持每天0.3次全盘写入,终生写入量288TB。

为了延长SSD磨损寿命,多数厂商提供容量超配 。例如一块100GB容量的SSD,其内部的闪存颗粒的物理容量是大于100GB,企业级SSD一般可以达到128G或者更多,超出的那部分就被称为冗余。或者采用较好的部件,如更好的颗粒、更好的控制芯片 ,提供强力的LDPC纠错算法等 ,但是SSD寿命并非单纯取决于闪存的类型,而是多个因素综合作用的结果。

闪存介质中,保存数据的基本单元被称为Cell。每个Cell通过注入、释放电子来记录不同的数据。电子在Cell中进出,会对Cell产生磨损;随着磨损程度的增加 ,Cell中的电子出现逃逸的概率会不断增加,进而导致Cell所保存的数据出现跳变。例如某个Cell最开始保存的二进制数据是10,一段时间后再读取该Cell,二进制数据可能就变成了11。因为闪存中保存的数据有一定的概率出现跳变,因此需要配合ECC算法(Error Correcting Code)来使用,SSD内部需要有ECC引擎进行数据检错和纠错

写入SSD颗粒数据时,ECC引擎基于原始数据计算出冗余数据,并将原始数据和冗余数据同时保存 。从SSD读取数据时,原始数据和冗余数据一并被读出,并通过ECC引擎检查错误并纠正错误,最终得到正确的原始数据。

闪存所保存的数据出现跳变的数量,随着擦写次数的增加而增加 。当擦写次数达到一定的阈值后,闪存中保存的数据出现跳变的数量会增大到ECC引擎无法纠正的程度,进而导致数据无法被读出。这个阈值就是闪存的最大擦写次数

在SSD领域,当前标准的ECC算法是BCH算法(以三位作者的名字首字母命名),可以满足绝大多数SSD的纠错需求。大多数产品中,闪存介质所宣称的最大擦写次数,就是基于BCH算法来给出 的,但是BCH算法的纠错数据位比较有限,所以目前纠错能力更强的算法也被应用,如LDPC(Low Density Parity Check Code) 是一个纠错能力很强的算法,可以纠正更多的数据跳变。

SLC、MLC及TLC这三种闪存芯片,大家都很清楚,但接下来QLC闪存芯片要开启它的逆袭之路,而东芝和西数已经率先做出表率 ,目前主要针对智能型手机(如iPhone等)、平板计算机和记忆卡市场。

东芝今后也计划推出采用堆栈 96 层制程技术的 512Gb(64GB)3D NAND 产品以及采用全球首见的QLC(Quad-Level Cell)技术的 3D NAND 产品 。该款QLC试作品为采用堆栈 64 层制程技术,实现业界最大容量的 768Gb(96GB)产品,已经提供给 SSD 厂、控制器厂进行研发使用。

西数全球首发了96层堆栈的3D NAND闪存,其使用的是新一代BiCS 4技术(预计下半年出样,2018年开始量产),除了TLC类型外,其还会支持QLC ,这个意义是重大的。西数已经用实际行动表明会支持QLC,而接下来三星、Intel、SK Hynix等厂商也势必会跟进(目前还没有正式公布QLC的进展),为何厂商会跟进可靠性、寿命比TLC还差的QLC

目前来看,QLC闪存单位存储密度是TLC的2倍,单颗芯片可达到256GB甚至512GB。但是QLC闪存的电压更难控制,写入速度更低,可靠、稳定性及寿命比TLC更差。个人觉得主要的原因是成本和闪存对寿命SSD的不断优化,随着SSD控制对QLC技术优化,也有理由相信QLC跟TLC走同样的路,也有可能被用在企业产品

从长远来看,能不能将SSD的价格拉下来,我个人对QLC是寄予厚望的,但具体时间目前却无法预知,从TLC到QLC的技术过度 需要时间,需要双倍的精度才能确保足够高的稳定性、寿命和性能。如果参考TLC的历程,价格优势更难在短期内体现出来,QLC大批量上市并且明显带动降价节奏的时间也是我所期待的。

对于存储介质的未来除了NAND Flash外,还要有很多技术值得期待。 SCM( Storage -Class-Memory)产品已经出现在大众视野 ,如美光、英特尔自2016年开始量产的3D-Xpoint ,威腾、东芝合作开发的3D-ReRAM 。SCM的读写速度是3D-NAND的千倍,但在产品测试结果显示只有几十倍,这也说明SCM在读写性能上还有较大的提升空间值得期待。然而3D-NAND+类DRAM混合型的4D-NAND集前端高速度DRAM和后端低价大容量的3D-NAND于一身,也将会在容量和性能中找到一个很好的折中点。

SSD入门必看这些专业术语你知道多少?

SSD领域涉及到较多的专业术语,为了更深入地了解SSD技术,本文对常用SSD术语进行简要的说明和介绍。

Namespace

命名空间,是 NVMe 协议中一个基本的逻辑空间的概念。简单地说,命名空间将 NVMe SSD 的用户空间进行逻辑划分,每个命名空间拥有自身的 NAND 颗粒,可以独立地进行格式化和加密等操作。

OP

Over-provisioning,一般称为预留空间,它是指 SSD 保留一部分闪存空间留作他用,这部分空间用户不可操作,容量大小一般是由主控决定的,一般不建议用户自行修改。OP 空间在垃圾回收(Garbage Collection, GC)、耗损平衡(Wear Leveling, WL)、减少写入放大(Write Amplification, WA)等多个方面都有作用,具体如何应用要取决于 SSD 主控算法。OP 的使用情况对于磁盘的健康状态是有影响的。

DWPD

Diskful Writes Per Day,每日整盘写入次数,是指在预期寿命内可每日完整写入 SSD 固态硬盘所有容量的次数。这个参数一般会作为参考 NMVe SSD 寿命和性能的重要评测数据。由于 SSD 的实现是基于电气原理的,每个 NAND 颗粒的擦写(P/E)次数是有限制的,一般厂家都会标定一个寿命期限。OP 所实现的 WL 对于维护磁盘的使用寿命具有很重要的意义。

MTBF

Mean Time Between Failures,平均无故障工作时间,或相邻两次故障之间的平均工作时间,是衡量一个产品的可靠性指标,单位为“小时”。MTBF主要通过实证法采用加速应力方式来证明产品长期可靠度,主要通过高温加速测试计算评估,从测试深度、广度、持久度三个方向进行测验。

PI

Protection Information,保护信息。完整的端到端数据保护支持由Host端生成PI,提供从Host直至SSD内部的完整端到端数据路径保护。在数据生成时,通过对数据添加PI,并将其作为元数据始终伴随用户数据一同传输和校验,借此降低静默错误的发生;同时,借助ECC(如BCH、LDPC)、Die间RAID5等手段,对检测到的错误数据加以修正,提升整个端到端数据传输过程中的可靠性。PI也可以通过SSD Controller生成,提供SSD盘内的数据保护,通常,后者称为“数据路径保护”技术。

PI与用户数据通常是连续存放。这要求SSD在提供标准的用户数据存储空间(如512字节或4096字节)之外,额外提供PI作为元数据的存储区域。

VSS

Viable Sector Size,可变Sector Size,也叫活性扇区大小。它允许SSD在保存用户数据的同时,保存该数据的元数据,也就是对PI的存储。它是全闪存阵列实现NVMe端到端数据保护,降低静默错误发生的必要前提。在保证一致性能前提下,进一步保证存储系统和分布式文件系统对数据可靠性的高要求。

DIF/DIX

PI 的具体实现包括 DIF 和 DIX 两种方式,这两种数据保护机制的主要区别是 PI 信息的位置不同。具体选择哪种格式,要根据应用场景的需求。

Data Integrity Field (DIF),即元数据与用户数据(LBA Data)连续存放。

Data Integrity Extension (DIX),元数据与用户数据单独存放。

SR-IOV

Single-Root I/O Virtualization,单根 I/O虚拟化。是一种基于硬件的虚拟化解决方案,通过利用PF和VF的属性,将一个设备虚拟出多个PCIe设备,利于虚拟机操作,从而大大减轻宿主机的CPU负荷,提高性能和可伸缩性,帮助系统解决虚拟机SSD盘的QoS问题,可支持更多数量的虚拟机业务。VM可直接与VF通信,不需要Hypervisor接入IO处理,节约 vCPU资源,实现性能隔离。

SR-IOV可实现多个虚拟机共享物理资源,且bypass Hypervisor(或者VMM)软件层,使得虚拟机可使用到NVMe SSD的高性能。

PRP

Physical Region Page,物理(内存)区域页,主机侧用于通知SSD数据所在的内存位置的一种方式。NVMe把Host的内存分为页的集合,页的大小在CC寄存器中配置,可以是4K、8K…128MB,PRP Entry是一个64位的内存物理地址指针,描述的是一段连续的物理内存的起始地址,PRP list中每个PRP Entry都描述一个物理页。每个NVME 命令有两个域,PRP1和PRP2,Host通过这两个域告诉SSD数据在内存中的位置或数据需要写入的地址。

SGL

Scatter Gather List,散列聚集列表,是另一种索引内存的数据结构。用以描述一段数据空间,该空间可以是数据源所在空间,也可以是数据目标空间,SGL由若干个SGL segment组成,每个segment又由若干个SGL descriptor组成。与PRP描述物理页不同,SGL可以描述任意大小的内存空间,更为灵活。

Multi-stream write

多流写,该技术可以使SSD根据主机端提供的Stream ID,将具有相同或相似生命周期的数据写入到相同的擦除单元中去,大大提高GC时的效率,减少写放大,使得SSD的性能和寿命都有较大的提升。

ZNS

Zoned Name Spaces,分区命名空间。ZNS将一个Namespace的逻辑地址空间切分成单个zone(一种固定大小的子区间),每个zone都有一段LBA(Logical Block Address, 逻辑地址空间)区间,这段区间只能顺序写,而且如果要覆盖写,则必须进行一次擦除操作。这样,namespace就可以把NAND内部结构的边界透露给外界。NVMe SSD也就能够将地址映射表等内部管理工作交由host去处理,从而减少写放大、选择合适的GC时机。ZNS驱动器减少了用于过度配置的额外闪存,因为它们不希望频繁写入,因此成本更低。

通过了解这些术语,我们可以更好地理解SSD技术的原理和性能特点,并在选择、使用和优化SSD时做出更明智的决策。

转载:

https://www.unionmem.com/news_detail-107-112.html

相关问答

SSD性能足够强悍的时候,比如5Gb/s,内存还有存在的必要性吗?

用认真的态度与专业的情怀倾注于存储,欢迎关注我,与我交流哦!目前我们市面上看到的最快的固态硬盘SSD速度在3.5GB/s左右,比如三星的M.2PCIeNVMeSSD960P...

【如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接C...

[回答](1)CN=DM,CN⊥DM,证明:∵点M、N分别是正方形ABCD的边AB、AD的中点∴AM=DN.AD=...

如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直...

[回答]A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值【解析】连接OA,OB,OC,作CH垂直于AB于H.根...

已知:AB=8,⊙O经过点A、B,以AB为一边画平行四边形ABCD,另...

[回答](1)如图1,连接OA,OB,∵OA=OB,∴∠OAB=∠OBA,∵四边形ABCD是平行四边形,∴AD=BC,AB∥CD,∠DAB=∠C,∴∠CEB=∠ABE,∵BC=BE,∴AD=BE,∴∠C=∠B...

 彭宏松  达蒙-斯塔德迈尔 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部