Linux系统移植之—uboot移植,你们要的uboot终于来了,堪称精品
作为一名过来人,uboot、kernel对每个学linux的来说都有很深的情谊,因为它们是一个系统跑起来的最基础,每个学linux的都会首先接触到。而它们本身就是一个精美的小系统,里边代码所体现的逻辑、算法以及每个绝妙的C知识点都让你沉醉其中。
uboot 属于bootloader的一种,是用来引导启动内核的,它的最终目的就是,从flash中读出内核,放到内存中,启动内核。具体内容如下:
1 uboot 的介绍及系统结构
1.1 uboot 介绍
1.2 获取 uboot
1.3 uboot 体系结构
1.3.1 uboot 目录结构
2 uboot 的启动过程及工作原理
2.1 启动模式介绍
2.2 阶段 1 介绍
2.2.1 定义入口
2.2.2 设置异常向量
2.2.3 设置 CPU 的模式为 SVC 模式
2.2.4 关闭看门狗
2.2.5 禁掉所有中断
2.2.6 设置以 CPU 的频率
2.2.7 设置 CP15
2.2.8 配置内存区控制寄存器
2.2.9 安装 UBOOT 使的栈空间
2.2.10 BSS 段清 0
2.2.11 搬移 Nand Flash 代码
2.2.12 进入 C 代码部分
2.3 阶段 2 的 C 语言代码部分
2.3.1 调用一系列的初始化函数
2.3.2 初始化网络设备
2.3.3 进入主 UBOOT 命令行
2.4 代码搬运
3 uboot 的移 植过程
3.1 环境
3.2 步骤
3.2.1 修改 Makefile
3.2.2 在 board 子目录中建立 crane2410
3.2.3 在 include/configs/中建立配置头文件
3.2.4 指定交叉编译工具的路径
3.2.5 测试编译能否成功
3.2.6 修改 lowlevel_init.S 文件
2.9 UBOOT 的 Nand Flash 移植
3.2.8 重新编译 uboot
3.2.9 把 uboot 烧入 flash
4.2 常用命令使用说明
4.2.1 askenv(F)
在标准输入(stdin)获得环境变量。
4.2.2 autoscr
从内存(Memory)运行脚本。(注意,从下载地址开始,例如我们的开发板是从 0x30008000 处开始运
行).
CRANE2410 # autoscr 0x30008000
## Executing script at 30008000
4.2.3 base
打印或者设置当前指令与下载地址的地址偏移。
4.2.4 bdinfo
打印开发板信息
CRANE2410 # bdinfo
-arch_number = 0x000000C1 (CPU 体系结构号)
-env_t = 0x00000000 (环境变量)
-boot_params = 0x30000100 (启动引导参数)
-DRAM bank = 0x00000000 (内存区)
--> start = 0x30000000 (SDRAM 起始地址)
--> size = 0x04000000 (SDRAM 大小)
-ethaddr = 01:23:45:67:89:AB (以太网地址)
-ip_addr = 192.168.1.5 (IP 地址)
-baudrate = 115200 bps (波特率)
4.2.5 bootp
通过网络使用 Bootp 或者 TFTP 协议引导境像文件。
CRANE2410 # help bootp
bootp [loadAddress] [bootfilename]
4.2.6 bootelf
默认从 0x30008000 引导 elf 格式的文件(vmlinux)
CRANE2410 # help bootelf
bootelf [address] - load address of ELF image.
4.2.7 bootd(=boot)
引导的默认命令,即运行 U-BOOT 中在“include/configs/smdk2410.h” 中设置的“bootcmd” 中
的命令。如下:
#define CONFIG_BOOTCOMMAND "tftp 0x30008000 uImage; bootm 0x30008000";
在命令下做如下试验:
CRANE2410 # set bootcmd printenv
CRANE2410 # boot
bootdelay=3
baudrate=115200
ethaddr=01:23:45:67:89:abCRANE2410 # bootd
bootdelay=3
baudrate=115200
ethaddr=01:23:45:67:89:ab
4.2.8 tftp(tftpboot)
即将内核镜像文件从 PC 中下载到 SDRAM 的指定地址,然后通过 bootm 来引导内核,前提是所用 PC 要安装设
置 tftp 服务。
下载信息:
CRANE2410 # tftp 0x30008000 zImage
TFTP from server 10.0.0.1; our IP address is 10.0.0.110
Filename 'zImage'.
Load address: 0x30008000
Loading: #################################################################
#################################################################
#################################################
done
Bytes transferred = 913880 (df1d8 hex)
4.2.9 bootm
内核的入口地址开始引导内核。
CRANE2410 # bootm 0x30008000
## Booting image at 30008000 ...
Starting kernel ...
Uncompressing
Linux......................................................................
done, .
4.2.10 go
直接跳转到可执行文件的入口地址,执行可执行文件。
CRANE2410 # go 0x30008000
## Starting application at 0x30008000 ...
4.2.11 cmp
对输入的两段内存地址进行比较。
CRANE2410 # cmp 0x30008000 0x30008040 64
word at 0x30008000 (0xe321f0d3) != word at 0x30008040 (0xc022020c)
Total of 0 words were the same
CRANE2410 # cmp 0x30008000 0x30008000 64
Total of 100 words were the same
4.2.12 coninfo
打印所有控制设备和信息,例如
-List of available devices:
-serial 80000003 SIO stdin stdout stderr
4.2.13 cp
内存拷贝,cp 源地址 目的地址 拷贝大小(字节)
CRANE2410 # help cp
cp [.b, .w, .l] source target count
ANE2410 # cp 0x30008000 0x3000f000 644.2.14 date
获得/设置/重设日期和时间
CRANE2410 # date
Date: 2006-6-6 (Tuesday) Time: 06:06:06
4.2.15 erase(F)
擦除 FLASH MEMORY, 由于该 ARM 板没有 Nor Flash, 所有不支持该命令.
CRANE2410 # help erase
erase start end
- erase FLASH from addr 'start' to addr 'end'
erase start +len
- erase FLASH from addr 'start' to the end of sect w/addr 'start'+'len'-1
erase N:SF[-SL]
- erase sectors SF-SL in FLASH bank # N
erase bank N
- erase FLASH bank # N
erase all
- erase all FLASH banks
4.2.16 flinfo(F)
打印 Nor Flash 信息, 由于该 ARM 板没有 Nor Flash, 所有不支持该命令.
4.2.17 iminfo
打印和校验内核镜像头, 内核的起始地址由 CFG_LOAD_ADDR 指定:
#define CFG_LOAD_ADDR 0x30008000 /* default load address */
该宏在 include/configs/crane2410.h 中定义.
CRANE2410 # iminfo
## Checking Image at 30008000 ...
Image Name: Linux-2.6.14.1
Created: 2006-06-28 7:43:01 UTC
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 1047080 Bytes = 1022.5 kB
Load Address: 30008000
Entry Point: 30008040
Verifying Checksum ... OK
4.2.18 loadb
从串口下载二进制文件
CRANE2410 # loadb
## Ready for binary (kermit) download to 0x30008000 at 115200 bps...
## Total Size = 0x00000000 = 0 Bytes
## Start Addr = 0x30008000
4.2.19 md
显示指定内存地址中的内容
CRANE2410 # md 0
00000000: ea000012 e59ff014 e59ff014 e59ff014 ................
00000010: e59ff014 e59ff014 e59ff014 e59ff014 ................
00000020: 33f80220 33f80280 33f802e0 33f80340 ..3...3...3@..3
00000030: 33f803a0 33f80400 33f80460 deadbeef ...3...3`..3....
00000040: 33f80000 33f80000 33f9c0b4 33fa019c ...3...3...3...3
00000050: e10f0000 e3c0001f e38000d3 e129f000 ..............).00000060: e3a00453 e3a01000 e5801000 e3e01000 S...............
00000070: e59f0444 e5801000 e59f1440 e59f0440 D.......@...@...
00000080: e5801000 e59f043c e3a01003 e5801000 ....<...........
00000090: eb000051 e24f009c e51f1060 e1500001 Q.....O.`.....P.
000000a0: 0a000007 e51f2068 e51f3068 e0432002 ....h ..h0... C.
000000b0: e0802002 e8b007f8 e8a107f8 e1500002 . ............P.
000000c0: dafffffb e51f008c e2400803 e2400080 ..........@...@.
000000d0: e240d00c e51f0094 e51f1094 e3a02000 ..@.......... ..
000000e0: e5802000 e2800004 e1500001 dafffffb . ........P.....
000000f0: eb000006 e59f13d0 e281f000 e1a00000 ................
4.2.20 mm
顺序显示指定地址往后的内存中的内容,可同时修改,地址自动递增。
CRANE2410 # mm 0x30008000
30008000: e1a00000 ? fffff
30008004: e1a00000 ? eeeeee
30008008: e1a00000 ? q
CRANE2410 # md 30008000
30008000: 000fffff 00eeeeee e1a00000 e1a00000 ................
30008010: e1a00000 e1a00000 e1a00000 e1a00000 ................
30008020: ea000002 016f2818 00000000 000df1d8 .....(o.........
30008030: e1a07001 e3a08000 e10f2000 e3120003 .p....... ......
4.2.21 mtest
简单的 RAM 检测
CRANE2410 # mtest
Pattern FFFFFFFD Writing... Reading...
4.2.22 mw
向内存地址写内容
CRANE2410 # md 30008000
30008000: ffffdffd ffffdffc ffffdffb ffffdffa ................
CRANE2410 # mw 30008000 0 4
CRANE2410 # md 30008000
30008000: 00000000 00000000 00000000 00000000 ................
4.2.23 nm
修改内存地址, 地址不递增
CRANE2410 # nm 30008000
30008000: de4c457f ? 00000000
30008000: 00000000 ? 11111111
30008000: 11111111 ?
4.2.24 printenv
打印环境变量
CRANE2410 # printenv
bootdelay=3
baudrate=115200
ethaddr=01:23:45:67:89:ab
ipaddr=10.0.0.110
serverip=10.0.0.1
netmask=255.255.255.0
stdin=serial
stdout=serialstderr=serial
Environment size: 153/65532 bytes
4.2.25 ping
ping 主机
CRANE2410 # ping 10.0.0.1
host 10.0.0.1 is alive
4.2.26 reset
复位 CPU
4.2.27 run
运行已经定义好的 U-BOOT 的命令
CRANE2410 # set myenv ping 10.0.0.1
CRANE2410 # run myenv
host 10.0.0.1 is alive
4.2.28 saveenv(F)
保存设定的环境变量
4.2.29 setenv
设置环境变量
CRANE2410 # setenv ipaddr 10.0.0.254
CRANE2410 # printenv
ipaddr=10.0.0.254
4.2.30 sleep
命令延时执行时间
CRANE2410 # sleep 1
4.2.31 version
打印 U-BOOT 版本信息
CRANE2410 # version
U-Boot 1.1.4 (Jul 4 2006 - 12:42:27)
4.2.32 nand info
打印 nand flash 信息
CRANE2410 # nand info
Device 0: Samsung K9F1208U0B at 0x4e000000 (64 MB, 16 kB sector)
4.2.33 nand device <n>
显示某个 nand 设备
CRANE2410 # nand device 0
Device 0: Samsung K9F1208U0B at 0x4e000000 (64 MB, 16 kB sector)
... is now current device
4.2.34 nand bad
CRANE2410 # nand bad
Device 0 bad blocks:4.2.35 nand read
nand read InAddr FlAddr size
InAddr: 从 nand flash 中读到内存的起始地址。
FlAddr: nand flash 的起始地址。
size: 从 nand flash 中读取的数据的大小。
CRANE2410 # nand read 0x30008000 0 0x100000
NAND read: device 0 offset 0, size 1048576 ...
1048576 bytes read: OK
4.2.36 nand erease
nand erase FlAddr size
FlAddr: nand flash 的起始地址
size: 从 nand flash 中擦除数据块的大小
CRANE2410 # nand erase 0x100000 0x20000
NAND erase: device 0 offset 1048576, size 131072 ... OK
4.2.37 nand write
nand write InAddr FlAddr size
InAddr: 写到 Nand Flash 中的数据在内存的起始地址
FlAddr: Nand Flash 的起始地址
size: 数据的大小
CRANE2410 # nand write 0x30f00000 0x100000 0x20000
NAND write: device 0 offset 1048576, size 131072 ...
131072 bytes written: OK
4.2.37 nboot
u-boot-1.1.4 代码对于 nboot 命令的帮助不正确,修改如下:
正确的顺序为:
nboot InAddr dev FlAddr
InAddr: 需要装载到的内存的地址。
FlAddr: 在 nand flash 上 uImage 存放的地址
dev: 设备号
需要提前设置环境变量,否则 nboot 不会调用 bootm
CRANE2410 #setenv autostart yes
CRANE2410 # nboot 30008000 0 100000
Loading from device 0: <NULL> at 0x4e000000 (offset 0x100000)
Image Name: Linux-2.6.14.3
Created: 2006-07-06 7:31:52 UTC
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 897428 Bytes = 876.4 kB
Load Address: 30008000
Entry Point: 30008040
Automatic boot of image at addr 0x30008000 ...
## Booting image at 30008000 ...
Starting kernel ...
4.3 命令简写说明
所以命令都可以简写,只要命令前面的一部分不会跟其它命令相同,就可以不用写全整个命令.save 命令
CRANE2410 # sa
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...Erasing sector 10 ... Erased 1 sectors
4.4 把文件写入 NandFlash
如果把一个传到内存中的文件写入到 Nand Flash 中, 如:新的 uboot.bin, zImage(内核),
rootfs 等, 如果做呢?我们可以用 Nand Flash 命令来完成. 但是 Nand Flash 写时,必须先要把 Nand
Flash 的写入区全部擦除后,才能写. 下面以把内存 0x30008000 起长度为 0x20000 的内容写到 Nand
Flash 中的 0x100000 为例.
CRANE2410 # nand erase 0x100000 20000
NAND erase: device 0 offset 1048576, size 131072 ... OK
CRANE2410 # nand write 0x30008000 0x100000 0x20000
NAND write: device 0 offset 1048576, size 131072 ...
131072 bytes written: OK
海思Hi35xx uboot启动分析总结
liwen01 2019.12.09
前言
在嵌入式linux设备中,uboot的最终目的就是启动kernel。对于uboot而言,没有人把它引导起来,所以uboot首先需要把自己加载起来,然后再去引导kernel的启动,这也就可以大致的分为Uboot启动的第一阶段和第二阶段。
(一)start.S第一阶段启动总结
在海思hi3251a官方的《Hi3521A_PINOUT_CN》手册上有上电锁存管脚BOOTROM_SEL,这个是引脚用来定义是从BOOTROM启动还是从spi flash启动 。
(1)BOOTROM启动
当启动模式为从 BOOTROM 启动时,海思的BOOTROM的程序会去初始化串口,然后与海思的HiBurn工具建立通信
如果能建立通信,则启动HiBurn升级uboot程序流程,如果不能与HiBurn建立连接,等待一段时间之后它就转去从外部的spi flash启动
(2)HiBurn 烧入原理
HiBurn烧入的基本原理是,HiBurn工具与BOOTROM程序建立连接之后,先下载uboot程序的开始4KB数据到海思芯片的内部RAM
然后通过下载的那一小部分uboot代码去初始化外部的DDR,如果DDR初始化成功,HiBurn再将剩下的uboot程序下载到外部的DDR中去
最后是在DDR中启动uboot,如果要进行烧入操作,是通过DDR中的Uboot程序,发送uboot命令将DDR中的uboot程序烧入到外部的flash中去,这样就实现了uboot程序的升级。
(3)spi flash启动
海思的hi3521a芯片支持从 SPI NOR Flash 和 SPI NAND Flash 直接启动,它的启动也就是我们start.s中的大部分实现。主要做的工作有:
初始化CPU相关功能(关缓存,关MMU,设置SVC模式等)将异常中断向量表重定向到内部RAM将uboot代码重定向到外部DDR中设置栈空间清空BSS段最后调用C语言接口去执行C语言代码实现第二阶段的启动。第一阶段在执行之后,在DDR中的映射空间的数据分布如下:(二)start_armboot第二阶段启动总结
在uboot的启动的第二阶段,主要做的是:
初始化变量和结构体重定向环境变量初始化堆管理器初始化环境变量进入命令处理循环在命令处理循环中,默认Uboot是超时等待用户命令输入
如果有检测到命令的输入,则执行相应的命令,如果超时没有命令输入,uboot默认执行的bootm命令进行kernel启动引导。
这里涉及到两个比较总要的点:环境变量的重定向和uboot命令处理。
(1)环境变量重定向
在uboot第二阶段的时候,uboot会去检测flash中环境变量的地址中环境变量是否有效,如果有效,则使用flash中的环境变量值来初始化uboot运行中的环境变量,如果flash中的环境变量无效,则使用默认的环境变量来初始化运行中的uboot。
在uboot的用户命令操作过程中,如果有对环境变量进行修改,都是修改的内存中的那一份环境变量,如果要将修改的环境变量保存到flash中去,则需要运行命令saveenvuboot在flash的分布如下:
uboot.bin烧入到flash的0地址位置,boot.bin里面的数据就是按我们连接脚本中的数据那样分布。在0x80000(512KB)开始的位置就是环境变量的在flash的位置,其大小为256KB。
(2)uboot命令处理
在启动的最后阶段,就是执行uboot的bootm命令,主要就是uboot将kernel程序从flash中复制到内存去,然后就是检验kernel镜像文件的有效性,设置uboot传递给kernel的参数,设置kernel启动的环境(比如关缓存,关中断,CPU处于SVC模式等)
最后就是通过一个函数指针指向kernel的启动地址,调用该函数实现uboot到kernel的运行。
在这个过程中,启动参数和机器码同时传递给kernel,关于参数传递,实际在这里是通过寄存器间参数的地址传递给了kernel。
(3)参数传递
C语言进行函数调用的时候,常常会传递给被调用的函数一些参数,对于这些C语言级别的参数,被编译器翻译成汇编语言的时候,就要找个地方存放一下,并且让被调用的函数能够访问,否则就没发实现传递参数了。对于找个地方放一下,分两种情况。
一种情况是,本身传递的参数就很少,就可以通过寄存器传送参数。因为在前面的保存现场的动作中,已经保存好了对应的寄存器的值,那么此时,这些寄存器就是空闲的,可以供我们使用的了,那就可以放参数,而参数少的情况下,就足够存放参数了,比如参数有2个,那么就用r0和r1存放即可。另外一种情况是,如果参数太多,寄存器不够用,那么就得把多余的参数堆栈中了。即,可以用堆栈来传递所有的或寄存器放不下的那些多余的参数。--------------End--------------
如需获取更多内容
请关注公众号 liwen01
相关问答
怎样在Linux下编程?需要什么技术?前言分享好玩科技,探索未知世界。大家好,我是drinkingcode。针对如何学习Linux编程,分享一下作为过来人的经验,希望可以帮助到大家。环境搭建如果要在Linu...