资讯
HOME
资讯
正文内容
美光Nand层数 过于关注3D NAND闪存层数可能是一种误导
发布时间 : 2024-10-11
作者 : 小编
访问数量 : 23
扫码分享至微信

过于关注3D NAND闪存层数可能是一种误导

NAND非易失性闪存存储器作为存储行业的突破性革新已有多年发展历史,随着2D NAND容量达到极限,以及晶体管越来越小,NAND的编程时间变长,擦写次数变少,能够将内存颗粒堆叠起来的3D NAND应运而生,可以支持在更小的空间内容纳更高的存储容量,在需要存储海量数据的时代有着重大价值。

依托于先进工艺的3D NAND,氧化层越来越薄,面临可靠性和稳定性的难题,未来的3D NAND将如何发展?如何正确判断一款3D NAND的总体效率?

图片源自长江存储

在2020年的闪存峰会上,TechInsights高级技术研究员Joengdong Choe发表了相关演讲,详细介绍了3D NAND和其他新兴存储器的未来。TechInsights是一家对包括闪存在内的半导体产品分析公司。

3D NAND路线图:三星最早入局,长江存储跨级追赶

Choe介绍了2014-2023年的世界领先存储公司的闪存路线图,包括三星、铠侠(原东芝存储)、英特尔、美光、SK 海力士和长江存储等公司的3D NAND技术发展路线。

Choe给出的路线图显示,三星电子最早在3D NAND开拓疆土,2013年8月初就宣布量产世界首款3D NAND,并于2015年推出32层的 3D NAND,需要注意的是,三星将该技术称之为V-NAND而不是3D NAND。

之后,三星陆续推出48层、64层、92层的V-NAND,今年又推出了 128层的产品。

SK 海力士稍晚于三星,于2014年推出3D NAND产品,并在2015年推出了36层的3D NAND,后续按照48层、72层/76层、96层的顺序发展,同样在今年推出128层的3D NAND闪存。

美光和英特尔这一领域是合作的关系,两者在2006年合资成立了Intel-Micron Flash Technologies(IMFT)公司,并联合开发NAND Flash和3D XPoint。不过,两者在合作十多年之后渐行渐远,IMFT于2019年1月15日被美光以15亿美元收购,之后英特尔也建立起了自己的NAND Flash和3D XPoint存储器研发团队。

另外,在路线图中,长江存储于2018年末推出了32层的3D NAND,2020年推出了64层的3D NAND。

从路线图中可以发现,从90多层跨越到100多层时,时间周期会更长。

相较于其他公司,国内公司3D NAND起步较晚,直到2017年底,才有长江存储推出国产首个真正意义上的32层3D NAND闪存。不过长江存储发展速度较快,基于自己的Xtacking架构直接从64层跨越到128层,今年4月宣布推出128层堆栈的3D NAND闪存,从闪存层数上看,已经进入第一梯队。

近期,长江存储CEO杨士宁也在2020北京微电子国际研讨会暨IC World学术会议上公开表示,长江存储用3年的时间走过国际厂商6年的路,目前的技术处于全球一流水准,下一步是解决产能的问题。

值得一提的是,在中国闪存市场日前公布的Q3季度全球闪存最新报告中,三星、铠侠、西部数据、SK 海力士、美光、英特尔六大闪存原厂占据了全球98.4%的市场份额,在剩下的1.6%的市场中,长江存储Q3季度的收入预计超过1%,位列全球第七。

层数并非唯一的判断标准

尽管在各大厂商的闪存技术比拼中,闪存层数的数量是最直接的评判标准之一。

不过,Choe指出,大众倾向于将注意力集中在闪存层数上可能是一种误导 ,因为字线(带有存储单元的活动层)的实际数量会有很大的不同,例如可以将其他层作为伪字线,以帮助缓解由较高层数引起的问题。

Choe表示,判断3D NAND工作效率的一种标准是用分层字线的总数除以总层数,依据这一标准,三星的拥有最优秀的设计,不过三星也没有使用多个层或堆栈,不像其他厂商当前的闪存那样使用“串堆栈”。

一种提高3D NAND总体效率的方法是将CMOS或控制电路(通常称为旁路电路)放置在闪存层下面。这一方法有许多名称,例如CuA(CMOS-under-Array)、PUC (Periphery-Under-Cell), 或者 COP (Cell-On-Periphery)。

长江存储的设计有些特别,因为它有一些电路在闪存的顶部,而CMOS在连接到闪存之前,是在更大的工艺节点中制造的。Choe认为这种技术有潜力,但目前存在产量问题。

另外,各个公司使用工艺也不尽相同,比较典型的就是电荷撷取闪存技术(Charge trap flash,简称CTF)和传统浮栅存储器技术(Floating gate,简称FG)。

CTF使用氮化硅来存储电子,而不是传统FG中典型的掺杂多晶硅。具体而言,FG将电子存储在栅极中,瑕疵会导致栅极和沟道之间形成短路,消耗栅极中的电荷,即每写入一次数据,栅极电荷就会被消耗一次,当栅极电荷被消耗完时,该闪存就无法再存储数据。而CTF的电荷是存储在绝缘层之上,绝缘体环绕沟道,控制栅极环绕绝缘体层,理论而言写入数据时,电荷未被消耗,可靠性更强。

Choe指出在当前的存储芯片公司中,英特尔和美光一直使用的是传统的浮栅级技术,而其他制造商则依靠电荷撷取闪存设计 。美光直到最近发布176层才更换新的技术,英特尔的QLC在使用浮栅技术的情况下,可以保持更好的磨损性能,但这也会影响其闪存的耐用性、可靠性、可扩展性以及其他性能优势。

下一个十年将指向500层

Choe在演讲中提到,铠侠未来将用到的分离栅结构或分离单元结构技术也很有趣,它可以使存储器的密度直接增加一倍,并且由于分离单元结构的半圆形形状而拥有特别坚固的浮栅结构,具有更强的耐用性。

Choe预计,随着平台或堆栈数量的增加(目前最多为两个),闪存层数将继续增加,每个闪存芯片的存储量也会相应增加。Choe认为,这与其他技术,例如,硅通孔(TSV),叠层封装(PoP / PoPoP)以及向5LC / PLC的迁移一样,都在下一个十年指向500层以上和3 TB裸片。

另外,Choe详细说明了闪存的成本是按照每GB多少美分来计算的,这意味着未来3D闪存的架构将越来越便宜,不过2D闪存的价格依然昂贵,甚至比3D闪存贵很多倍。

谈到尖端闪存技术的推进,Choe认为尖端闪存总是首先进入移动和嵌入式产品,例如5G手机是当下的主要驱动力。他还指出,2D平面闪存仍然有一些应用市场,通常将其视为低延迟SLC用作3D XPiont的存储类内存(SCM)的替代品,如Optane或美光最近发布的X100,尽管X100在消费市场并不常见。

目前,100层以上的3D闪存产品,目前已经发布了SK 海力士128L Gold P31和三星128L 980 PRO,美光最近也基于176L flash发布了Phison E18的硬盘原型。另外,西部数据和铠侠的BiCS5和英特尔的144层产品将在明年发布。

更好的控制器需要更高密度的闪存,未来几年闪存将向更快和更大容量的方向发展。

本文编译自:https://www.tomshardware.com/news/techinsights-outlines-the-future-of-3d-nand-flash

雷锋网雷锋网雷锋网

美光宣布已量产全球首款232层NAND

北京时间7月27日,Micron宣布已量产全球首款232层NAND。它采用了业界领先的创新技术,从而为存储解决方案带来前所未有的性能。与前几代NAND相比,该产品拥有业界最高的面密度和更高的容量及能效,能为客户端及云端等数据密集型应用提供卓越支持。

美光出货全球首款232层NAND,进一步巩固技术领先地位

美光技术与产品执行副总裁Scott DeBoer表示:“美光232层NAND率先在生产中将3D NAND堆叠层数扩展到超过200层,可谓存储创新的分水岭。此项突破性技术得益于广泛的创新,包括创建高深宽比结构的先进工艺能力、新型材料的进步,以及基于美光市场领先的176层NAND技术所进行的进一步设计创新。”

领先技术铸就卓越性能

随着全球数据量的增加,客户必须扩大存储容量,提升性能,同时降低能耗,并满足对环境可持续发展更为严格的要求。美光232层NAND技术提供了必要的高性能存储,支持数据中心和汽车应用所需的先进解决方案和实时服务,同时还可在移动设备、消费电子产品和PC上实现快速响应和沉浸式体验。美光还在该技术节点上实现了业界最快的NAND输入/输出(I/O)速度[1](每秒2.4GB),以满足低延迟和高吞吐量的需求,适用于人工智能和机器学习、非结构化数据库和实时分析,以及云计算等数据密集型工作负载。该I/O速度比美光在176层节点上所支持的最高速度还要快50%[2]。相比上一代产品,美光232层NAND的每颗裸片写入带宽提升至高100%,读取带宽提升至少75%[2]。这些优势提升了SSD和嵌入式NAND解决方案的性能和能效。

此外,美光232层NAND还是全球首款六平面TLC量产NAND[3]。与其他TLC闪存相比,该产品在每颗裸片上拥有最多的平面数量[3],且每个平面都具有独立的数据读取能力。高I/O速度和低读写延迟,以及美光的六平面架构,使其可在多种配置中提供一流的数据传输能力。该结构可确保减少写入和读取命令冲突,推动系统级服务质量的提升。

前沿创新技术带来了具备最高性能和晶圆密度的TLC NAND,并全部采用业界最小封装

美光232层NAND是首款支持NV-LPDDR4的量产技术。NV-LPDDR4是一种低压接口,与此前的I/O接口相比,每比特传输能耗可降低至少30%。因此,232层NAND解决方案可实现高性能与低功耗平衡,是移动应用以及数据中心和智能边缘领域部署的理想之选。此外,该接口还可向后兼容,支持传统控制器和系统。

232层NAND紧凑的外形规格还便于客户进行灵活设计,同时实现超越历代产品的每平方毫米最高的TLC密度(14.6 Gb/mm2)[3]。其面密度比当今市场上的TLC竞品高35%到100%[3]。它还采用全新的11.5mm x 13.5mm封装规格,较前几代产品的封装尺寸小28%[2],使其成为目前市场上尺寸最小的高密度NAND[3]。该产品兼具小体积和高密度,因此占用更小的电路板空间,适用于各类部署。

下一代NAND助力整个市场实现创新

美光首席商务官Sumit Sadana表示:“美光持续率先上市更高堆叠层数的NAND,实现移动设备更长的电池续航和更紧凑的存储空间,提升云计算性能,加快AI模型的训练速度,从而能够保持长期的技术领先地位。美光232层NAND为端到端存储创新确立了新基准,助推多个行业的数字化转型。”

232层NAND的开发得益于美光领先业界的研发和制程技术进步。这些突破性技术将帮助客户在数据中心、轻薄笔记本电脑、新型移动设备和智能边缘等领域打造更多创新解决方案。

供货情况

美光232层NAND目前已在其新加坡晶圆厂实现量产,并首先以组件形式通过英睿达(Crucial)SSD消费类产品线向客户出货。其他产品信息及供货状况将在稍后公布。

美光位于新加坡的NAND卓越中心因其在智能制造领域的优秀运营能力而被世界经济论坛列入其全球灯塔工厂网络。先进的AI工具、智能控制系统和预测能力使美光能够加速产品开发,强化产品质量,更快提升良率,从而缩短产品上市时间。

[1]上市时NAND I/O速度为1.6GB/s

[2]与美光产品数据表比较

[3]与当前市场上出货的NAND产品比较

(7977510)

相关问答

镁光 发展史?

MicronTechnology(镁光科技)位于,于由WardParkinson、JoeParkinson、DennisWilson和DougPitman创立,1981年成立自有晶圆制造厂。...

镁光 是哪个国家的?

美国的。镁光(Micron)是内存的品牌商,全球排名第二。但镁光身为世界第二大内存颗粒制造商。产品在国内却比较少见。这是因为镁光很少将自己的优质颗粒卖给...

micron是什么公司?

Micron(美国镁光)半导体是全球第三大内存芯片厂,是全球著名的半导体存储器方案供应商,是美国500强企业之一。美光科技有限公司(MicronTechnology,Inc.)...

镁光 1100和m600哪个好?

0的前一...颗粒方面MLC理论上寿命更长久,但是1100使用了3D堆叠技术,并没有比MLC差。如果是纠结这个颗粒层面,我觉得完全没有必要M600属于15年末产产品,是1...

合肥长鑫和长江存储两个企业的存储芯片和未来发展哪个更有潜力?

合肥长鑫和长江存储两个企业的存储芯片和未来发展哪个更有潜力?闪存也好内存也罢都是国内相当薄弱的环节,都是要在国外垄断企业口里夺食,如果发展得好都是相当...

固态硬盘能用多久?

对固态硬盘来说,寿命跟品质有很大关系,只要是大牌主控颗粒,就基本不用强迫症,担心能用多久是杞人忧天。这也是为什么三星英特尔连QLC颗粒都敢出货的原因。因...

谁能详细介绍一下芯片的设计,制造和封测技术?

国产的3D-NADA芯片之所以落后,就是在于国产的芯片堆叠层数较低,目前国产的芯片最高可以做到64层,但是像三星、镁光,却可以做到128层以上。叠加的层数越多,...经...

英特尔slc固态硬盘-ZOL问答

SLC以前在64G固态有,因为闪存性能很低,排放占用位置大,闪存芯片单面储存,读写使用寿命低已淘汰,现在Intel与镁光研发新的3DNAND堆叠技术,使储存密度大大增加了...

新存科技和长江存储哪个好?

1、长江存储科技有限责任公司长江存储是一家专注于3DNAND闪存设计制造一体化的IDM集成电路企业,产品主要包括3DNAND闪存晶圆及颗粒,嵌入式存储芯片以及消...

三星也被告了,ZeniMax是不是耍流氓?

从2016年开始,闪存芯片一直处于缺货状态,伴随着缺货,闪存价格从第二季度一直上涨到2015年年初水平。在当下缺货、涨价的背景下,华为在P10里同时使用了UFS2.1...T...

 nepcs  安师傅 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部