3D NAND,只能堆叠?
NAND发展似乎进入了一个怪圈。曾经的东芝存储,如今的铠侠刚宣布了一个好消息:随着存储市场的复苏,铠侠已经结束了NAND 闪存的减产策略,目前铠侠在日本三重县四日市和岩手县北上市两座工厂产线的产能利用率已提升至100%。
此外铠侠在连续 6 个季度的亏损后也在上季度重新实现了103亿日元盈利,由三家银行组成的贷款银团同意对铠侠即将到期的5400亿日元(当前约249.25 元人民币)贷款进行再融资,并提供2100亿日元的新信贷额度。
而其他存储厂商,也在努力恢复之前削减的NAND产能,三星的 NAND 闪存产能已攀升至 70% 左右, SK 海力士正在加大高容量 NAND 产品(如高容量 eSSD)的生产,而西部数据则正将其生产利用率提高到 90% 左右。
不过,NAND市场的寒冬恐怕还未结束,有专家担心,产量的快速增长可能会超过需求,从而抑制 NAND 闪存价格的上涨,韩国工业经济贸易研究院研究员金仰N鹏表示:“除了人工智能数据中心使用的高容量 NAND,很难说整个 NAND 市场都在复苏,产量的突然激增可能会压低一直在上涨的 NAND 价格。”
这也意味着,接下来的一年中,NAND市场依旧存在着许多不确定性,能否像DRAM一样快速恢复元气,还是一个未知数。
而更大的挑战仍然是技术层面的,3D NAND的下一步到底是什么?
NAND,何去何从
对于NAND来说,21世纪的头十年和DRAM别无二致,借助不断发展的摩尔定律,通过更高分辨率的光刻,持续微缩晶体管,从而带来存储密度和性能的提升。
但在2010年之后,这条微缩之路逐渐走到了尽头,一方面,EUV技术量产比想象中更慢,DUV已经达到了极限,而曲线救国的多重曝光方法带来的高成本与低良率也是NAND厂商所不能接受的。
最终,3D NAND技术成为了新的发展方向,传统NAND Flash 采用平面设计,而3D NAND 是以则由原本平铺的存储单元所堆叠而成,由传统单层存储提升至高达上百层的堆叠,让其存储容量相较于传统2D NAND Flash有了大幅提升。
直到今天,3D NAND也在持续推动着整个存储市场的发展,但行业内的对NAND未来发展方向的争议却似乎从未停止过。
早在2004年国际固态电路会议(ISSCC)上,Sub-Micron Circuits的Jagdish Pathak就表示:“为了在2010年之后继续缩放闪存技术,需要进行深入研究。90纳米的闪存已经投入生产,在65纳米上存在争议,有些人认为可以继续缩放,有些人则表示怀疑。我认为在接近45纳米时,浮动栅极结构会面临更大的缩放困难。有很多很多的挑战。”
三星存储部门副总裁Kim Ki-Nam博士选择了基于硫属化物的方法(即PCRAM、PRAM和Ovonics统一存储器),这种方法依赖材料的相变效应来实现切换。Kim说:“它比其他方法具有更好的可扩展性。”
日立中央研究实验室的Tomoyuki Ishii正在研究NanoCrystal存储技术,这是一种单电子存储技术的衍生方法。Ishii说:“它可以垂直和水平缩放,多状态数据提供了所有替代方案中最低的每比特成本。氧化物可以缩放到5纳米的厚度,而且这也是一个纯硅工艺。”NanoCrystal的挑战是编程和擦除时间慢以及高电压。Ishii认为这些问题将在两到三年内解决。
英飞凌科技和摩托罗拉则把资金投入到MRAM上。英飞凌的Sitaram Arkalgud称MRAM是“对通用存储应用极具吸引力的候选者”。然而,Jagdish Pathak指出,第一篇关于MRAM的论文发表在1991年,但至今仍没有商业产品。
英特尔闪存开发总监Greg Atwood说:“目前尚不清楚是否存在或即将出现能够挑战浮动栅极的技术。”
可以看到,20年前,各家对NAND的下一步提出了不同看法,最终,NAND 闪存行业放弃了传统的扩展方式。首批商用 3D NAND 产品于 2013 年推出,堆栈数量为 24 个字线层 (128 Gb)。根据供应商的不同,结构存在差异,以不同的名称为人所知,例如 V-NAND 和 BICS,3D NAND成为了第一个也是唯一一个将真正的 3D 产品推向市场的技术。
为了保证NAND密度能够不断提升,厂商们在这20年时间中实施了更多创新,从而促进具有挑战性的 3D 工艺或进一步提高位密度,后者的一个例子是将每个单元的比特数增加到最多4个,这是NAND闪存技术的真正优势。例如,使用4个比特时,多级单元在每个单独的晶体管中使用16个离散电荷级别,这得益于足够大的存储窗口。
另一个显著的创新是用电荷陷阱单元取代了浮栅单元,这涉及更简化的工艺流程。这两种单元类型的工作原理相对类似,但在电荷陷阱单元中,捕获层是绝缘体——通常是氮化硅——这减少了邻近单元之间的静电干扰。现在,大多数3D-NAND结构都以这种电荷陷阱单元为基础。
值得一提的是,3D NAND依旧在不断的堆叠当中,其中几家主要的NAND厂商,目前已经向200层以上发起进攻。
三星一直处于3D NAND创新的前沿。他们在V7中采用了双层结构,并引入了COP整合以提高性能。随着V8 236层1 Tb TLC产品的发布,三星展示了其不断突破技术界限的承诺。展望未来,三星已经在计划V9,采用280层COP V-NAND和类似于其他领先竞争对手的混合键合技术。
铠侠(KIOXIA)和西部数据(WDC)保持了BiCS结构,专注于提高层数。通过宣布第八代BiCS产品具有218层,并计划推出具备284层的后续版本,铠侠展示了其在NAND技术进步方面的决心。
美光(Micron)转向CTF CuA整合,凭借 176L 和 232L 产品的发布引领市场。他们还在开发 Gen7,可能会跳过 300 层节点,瞄准 400 层设备,展现出他们对未来创新的雄心。
SK海力士继续使用4D PUC结构,计划大规模生产238层V8 4D PUC产品,其正在为进一步发展做好准备,可能在不久的将来达到370层或380层。
长江存储(YMTC)的Xtacking结构取得了显著进展,从176层跳到232层。尽管面临芯片禁令带来的挑战,其仍然专注于开发更先进的QLC设备和multi-Xtacking技术。
旺宏电子(MXIC)以其第一代3D NAND芯片进入市场,应用于任天堂Switch等产品。计划推出具有96层的第二代产品,其准备在行业中取得进一步进展。
厂商们甚至已经开始绘制1000层的蓝图。激进的铠侠近期表示,以每年 1.33 倍的增长率,3D NAND到 2027 年将可达到 1,000 层的水平,三星则在之前预测,到 2030 年左右,其 3D NAND 可以堆叠超过 1,000 层。
随着 3D NAND 的成熟,SLC 和 MLC 逐渐被淘汰,TLC 占据主导地位,而最新的QLC 比 TLC 密度更高,而且还有五级单元工作,成本较低。但问题也接踵而至,尽管 QLC SSD 密度高且成本较低,但性能并不好,更容易出错,使用寿命也不如更昂贵的 TLC NAND 的 SSD 长。
此外,尽管 NAND 取得了诸多进步,但它本身能做的事情非常有限,主要在于其写入速度仍会阻碍其大幅缩小与 DRAM 的差距或达到 Optane 的性能,这主要归结于量子力学,这意味着闪存写入速度为数十毫秒,而 DRAM 写入速度为数十纳秒,该限制将使 NAND 闪存无法填补空白。
AI会是希望吗?
AI不仅带动了DRAM市场中HBM部分的增长,也给NAND带来了一些好消息。
根据市场研究公司Omdia在6月10日的报告,预计今年QLC NAND市场规模将比去年增长85%,其在整体NAND市场的份额将从去年的12.9%增加近8个百分点,达到今年的20.7%。
Omdia预测,到2027年,QLC NAND将在整个NAND市场中占据46.4%的份额,三年内份额将翻倍,接近目前占据51%市场份额的三级存储单元(TLC)产品。值得注意的是,尽管直到去年QLC NAND产品主要面向消费者,但今年需求预计主要增长在更高价位的服务器产品上。
QLC NAND的特性与大型科技公司在其服务器上部署生成性AI的需求非常契合。SSD比传统硬盘驱动器(HDD)提供更快的数据读写速度,这突显了每单位面积存储更多信息和减少功耗的优势。NAND制造商也在迅速响应对QLC NAND需求的激增。有乐观的说法认为,NAND市场的“春天”可能比预期的更强劲。像去年基于AI需求的HBM需求增长一样,NAND市场可能会经历类似的长期市场形成。
不过,尽管QLC NAND吃到了AI的红利,但它本身的问题依旧存在,尤其是在高读取工作负载的环境下,不论是寿命还是性能,都会受到很大的影响。
有趣的是,AI在带动NAND市场发展的同时,也给NAND提供了一种解题思路。
在使用 AI 来更好地管理 SSD 中的 NAND这方面,主控厂商已经走在了前面,据报道,Microchip Technology 的闪存控制器内嵌有机器学习引擎,以帮助延长 NAND 的寿命并改善比特错误率。
在一次独家采访中,Microchip 数据中心解决方案业务部门的 Ranya Daas 说,虽然在后台使用算法会增加开销,因为它需要处理能力,但她表示,机器学习可以使 NAND 单元训练以减少读取和重试次数,从而优化读取电压。“你会从一开始就知道要去读取哪个参考电压。”
Daas认为,这种方法有机会延长 NAND 闪存的寿命,减少延迟,并且不增加必须实时进行的后台处理。
此外,SSD 制造商 Phison Electronics 也在利用 AI 来提高闪存在驱动器内的性能。
“你无法克服闪存的固有延迟,” Phison 的首席技术官 Sebastien Jean 在接受 EE Times 独家采访时表示。“它具有自身的延迟结构。在任何现实的工作负载和任何现实的数据量中,你不可能缓存足够的数据以在统计上产生差异。”
除了其第四代 LDPC ECC 引擎外,Phison 还专注于可以通过 AI 改善的痛点,Jean 说。其 Imagin+ 定制和设计服务包括 AI 计算模型和 AI 服务解决方案,以帮助公司客户设计和工程定制闪存部署。
Imagin+ 与 Phison 产品一起工作,优化用于 aiDAPTIV AI+ML 工作负载。aiDAPTIV+ 将 SSD 集成到 AI 计算框架中,以提高 AI 硬件架构的整体操作性能和效率。它结构性地划分大规模 AI 模型,并通过 SSD 卸载支持运行模型参数。Phison 的方法旨在在有限的 GPU 和 DRAM 资源内最大化可执行的 AI 模型。
从某种意义上说,AI 正在使闪存更好地处理 AI。Jean表示,AI 可以用于热/冷映射。在闪存存储阵列采用的早期,公司必须决定哪些数据足够重要以存储在较快的闪存上,而不是较慢的旋转磁盘上。他说,通过改进热/冷检测映射,可以延长驱动器的寿命,减少延迟,并在整个读/写周期内保持更紧密的性能。
在一味强调堆叠的今天,NAND本身的性能寿命遇到了新的挑战,而AI似乎不仅是NAND未来的“衣食父母”,也是它下一步发展的救星之一。
写在最后
对于NAND产业来说,市面上的参与者比DRAM更多,也意味着竞争更加激烈。
当DRAM产业中HBM这样的高附加值产品出现后,也让许多人开始思考,NAND产业的“HBM式变革”在何处,它能否带来产业的新一轮发展。
更高的密度或许可以满足市场目前的需求,但堆叠层数,或许已经不是唯一的答案。
NAND技术未来的两个发展方向
由于企业存储对可靠性、延迟、容量、成本等有了更高的要求,闪存的表现成为企业正在关注的新选择。然而,闪存的进一步发展遇到了可靠性和容量等发展瓶颈,这使闪存在企业数据中心的生命周期受到挑战。但存储科技正在从两个方向通过新的思路突破这些瓶颈,如在不在盲目追求制程缩小的情况下提高存储容量,或是发展存储单元堆叠的3D NAND。
企业级TLC NAND的落地
一直以来,NAND的发展在遵循着摩尔定律,NAND的支撑不断在缩小。从2013年,NAND纳米制程技术由2Y nm全面转进1X nm等级,并于去年全面普及了1X nm,正在朝着10nm以内的目标迈进。制程不断缩小的好处显而易见,、在同样的芯片面积上存储单元的密度增加一倍,就相当于每个存储单元成本下降50%。
从制造工艺技术上来说,制程的缩小对于每一家厂商都是不小的挑战。需要生产更小制程的NAND产品,就需要投入新的技术,如辅助的两次图形曝光技术、极远紫外光刻(EUV)技术。但从新技术的投入到合格产品的量产之间要经历复杂的过程,工艺周期较长。为此,NAND厂商们的产品换代都是循序渐渐地。例如,三星从19nm为基础逐步过渡到16nm技术,东芝闪迪先提高19×24nm制程技术后才转进19×19nm制程技术。
然而,当制造工艺技术需要向更小的制程发展时,存储厂商们的更大的挑战发生了转移。制程的缩小意味着同样容量的存储单元需要占用更少的面积,各个存储单元之间受温度、电子、信号等抗干扰性要求就要增强。尤其是从单一存储单元仅有一位(bit)的SLC NAND发展到单一存储单元仅有三位TLC NAND时,在更小的面积里,存储单元之间的干扰问题变得更加严重。除此之外,存储控制器对 TLC的状态检测也变得更加不容易。TLC芯片虽然储存容量变大,成本低廉许多,但因为如上各种原因在寿命、效能等方面大打折扣。所以,当前企业级NAND较少进入使用TLC颗粒阶段。
不过,TLC NAND发展是大势所趋,三星、英特尔等均以表示会在未来两年将企业级TLC NAND落地。
3D NAND上的角力
在力图将企业级TLC NAND落地的同时,厂商们也在寻求新的技术突破来破解企业闪存发展瓶颈,延长闪存生命周期。这个方向就是3D NAND技术。传统的NAND技术是2D的平面技术,而3D NAND技术是将存储单元的堆叠技术
在现有存储厂商中实现3D NAND技术的厂家并不多,主要以三星、英特尔美光、东芝闪迪为主要阵营。其中三星在3D NAND技术上的发展较为领先。去年,三星已经有了自己的3D NAND第二代技术,并在今年初签下了谷歌数据中心大单。而最近,英特尔携手美光、东芝联合闪迪,相继发布了3D NAND制程技术的最新进度。预计,东芝闪迪的3D NAND将会在2016年大批量生产,英特尔美光的最新3D NAND会在今年第四季度全面投产,到时企业数据中心就会有更多选择。
3D NAND技术采用不同于传统NAND闪存的排列方式。以三星为例,三星通过改进型的Charge Trap Flash 技术,在一个3D的空间内垂直互连各个层面的存储单元,使得在同样的平面内获得更多的存储空间。从平面到立体,并不是个简单的存储芯片堆积过程,而是在同一芯片内堆积存储单元。所以,3D NAND制造采用了更大制程的闪存颗粒,如48nm、28nm等。
2D闪存达到一定密度后,电荷存储能力会大大下降,相邻闪存单元的干扰也会非常严重,无法进一步提升,为此传统的闪存编程分为三个阶段:器件插入印刷电路板(PCB) 之前的预编程、闪存器件安装到PCB上之后对其进行编程、使用PCB上的JTAG兼容器件进行编程。这个过程相当复杂,但是为更精确地控制电荷电量只好如此。3D V-NAND的制造优势之一就是没有传统2D闪存这些问题,无需进行多阶段控制,如三星通过HSP技术将多阶段编程过程整合为一个,闪存编程时间大为减少。
相对于使用TLC颗粒,企业级闪存采用3D结构更容易实现闪存寿命的延长。因此,在企业级闪存市场,厂商们在3D NAND技术上会比TLC NAND更先发力。如去年年初三星在研发企业级闪存TLC NADN时,已经开始投资3D NAND的量产计划。但是可以预见,3D NAND技术与企业级TLC闪存在更小的制程上终将会实现融合。
相关问答
什么是3DNAND?[回答]下一代非易失性存储器技术(Flash)正在变得越来越主流,并在企业中盛行。它具有能够将更多位打包到与更老的NAND技术相同的尺寸的优点。目前大多数闪...
如果CPU是沙子做成的,那内存和闪存是什么做成的?3.Intel的3DX-point技术就是很好的方向,产品即傲腾和Intel90xP系列,兼顾闪存的非易失性和内存的低读写延迟,可以说是存储技术的明星方向。4.不存在磁头“...2...
flash烧录和ic烧录?,IC烧录设备该怎么选,都来说说?[回答](烧uboot和内核)比如直接nanderase全擦除。然后再把文件写到内存tftp内存地址文件名然后再nandwrite进去的。根文件系统是把板子分区挂载起来后再烧...
兆易创新与汇顶科技谁潜力大?你好,从股市来看兆易创新更具有发展潜力,汇顶科技已经是老牌企业了。兆易创新主营业务:主要业务为闪存芯片及其衍生产品(代码型闪存芯片NORFlash和数据型...
Intel美光的3D Xpoint能够撑起未来存储的一片天吗?如此一来,NAND就需要使用更为复杂的垃圾回收算法,从而更为高效地实现性能水平。然而无论算法多么精巧,处于稳定状态的驱动器在性能上仍然会因此受到影响,因为...
Intel 发展 史?在过去的50年里,英特尔的成就我们都看在眼里,虽然它错过了一些很好的机遇,但它绝对是一家伟大的公司,希望在以后的发展之路上即使荆棘遍布,英特尔也能砥砺前...
闪存都有那些种类?定义是什么?又是怎样分别的?[回答]U盘``sd卡!闪存(FlashMemory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信息)的存储器,数据删除不是以单个的字节为单位而是以固...
汽车电子龙头排名?汽车芯片股票龙头排名2021汽车芯片股票龙头股名单第一名,紫光国微。公司自主研发的THD89系列产品是国内最高安全等级芯片,在原有通过AEC-Q100车规级认证的...
中国有自己生产的芯片吗?近日,美国政府对中兴通讯发出出口禁令,引发舆论对于中国尖端产业自主创新的讨论,并激发了国人对于“中国芯”的思考。那么我们中国有自己生产的芯片吗?芯片产...
紫光股份属于人工智能吗?今年以来,科技股持续火热,尤其是新基建和芯片自主可控等板块深受资本市场的关注。在众所周知的行业利好中,哪些公司真的业绩实锤?又有哪些公司强势开挂,有...