3D NAND,1000层
据Xtech Nikkei报道,Kioxia 首席技术官 (CTO) Hidefumi Miyajima 表示,该公司计划到 2031 年批量生产超过 1,000 层的 3D NAND 内存。在东京城市大学举行的第 71 届应用物理学会春季会议上的演讲中,Miyajima 讨论了在 3D NAND 器件中实现超过 1000 层的技术挑战和解决方案。
增加 3D NAND 器件中的有源层数量是当今提高闪存记录密度的最佳方法,因此所有 3D NAND 制造商都努力每 1.5 到 2 年就推出新的工艺节点来实现这一目标。每个新节点都会带来一些挑战,因为 3D NAND 制造商必须增加层数并横向和纵向缩小 NAND 单元。这个过程要求制造商在每个新节点都采用新材料,这是一项重大的研发挑战。
图1:NAND 闪存公司正在竞相开发通过高堆叠增加容量的技术。
2013年前后,NAND Flash的容量提升方式从小型化转向分层化。目前,各家公司都在竞相量产200层以上的3D NAND(图1)。小型化的限制是由于器件操作的物理限制和光刻成本的增加,但对于堆叠而言,“如何降低工艺成本已成为与光刻一样大的问题。”
蚀刻工艺对制造成本的影响特别大。3D NAND 的多层薄膜形成后,通过等离子蚀刻产生大量孔(存储孔),从顶层贯穿底层。该工艺是通过在孔中沉积氧化膜、氮化膜等来制造多层存储单元。
内存孔的直径约为100纳米,深度为数微米,因此能够快速、均匀地钻出大深宽比孔的蚀刻技术至关重要。每 300mm 晶圆上的存储孔数量达到数万亿个。
这种蚀刻工艺“大约需要一个小时。因为需要时间,所以需要增加设备数量,使其成为(对于3D NAND)成本最高的工艺”。随着堆叠层数的增加以及存储孔的深宽比的增加,蚀刻所需的时间呈指数增长,从而增加了制造成本。均匀加工难度的增加也往往是降低产量的一个因素。
因此,对于Kioxia的第8代产品,我们没有一次性构建218层,而是采用了分两步构建的方法。但又增加了新的困难,比如需要将下层和上层的内存孔完美对齐。
如今,Kioxia 最好的 3D NAND 器件是第八代 BiCS 3D NAND 存储器,具有 218 个有源层和 3.2 GT/s 接口(于 2023 年 3 月首次推出)。这一代引入了一种新颖的CBA(CMOS直接键合到阵列)架构,该架构涉及使用最合适的工艺技术单独制造3D NAND单元阵列晶圆和I/O CMOS晶圆并将它们键合在一起。其结果是产品具有增强的位密度和改进的 NAND I/O 速度,这确保了内存可用于构建最好的 SSD。
与此同时,Kioxia 及其制造合作伙伴 Western Digital 尚未披露 CBA 架构的具体细节,例如 I/O CMOS 晶圆是否包括额外的 NAND 外围电路(如页缓冲器(page buffers)、读出放大器和电荷泵)。通过分别生产存储单元和外围电路,制造商可以为每个组件利用最高效的工艺技术,随着行业向串堆叠等方法发展,制造商将获得更多优势,串堆叠肯定会用于 1,000 层 3D NAND。
值得注意的是,三星还预计将实现量产级1000层3D NAND。根据2022年9月的报道,该公司目前正在设计第 9 代和第 10 代 V-NAND 并进行原型设计,与当今的技术相比,层密度适当增加。三星目前正在出货其第七代 176 层 V-NAND,并计划在今年年底前发布基于其第八代 230 层设计的 V-NAND 芯片。后者采用 512 Gb 芯片,密度将提高 42%。
但三星正着眼于密度的更大幅度跃升,并预计到 2030 年实现 1,000 层 V-NAND 设计。三星还继续致力于 QLC(四级单元)技术,希望在提高存储位的同时提高性能密度。
3D-NAND 的层数有限制吗?
回顾 2D NAND,它采用平面架构,浮动栅极 (FG) 和外围电路彼此相邻。2007年,随着2D NAND的尺寸达到极限,东芝提出了3D NAND结构。
三星于 2013 年率先向市场推出了所谓的“V-NAND”。
3D 设计引入了多晶硅和二氧化硅的交替层,并将浮动栅极替换为电荷陷阱闪存 (CTF)。这些区别既有技术上的,也有经济上的。FG 将存储器存储在导电层中,而 CTF 将电荷“捕获”在介电层内。由于制造成本降低,CTF 设计很快成为首选,但当然不是唯一的。
IBM 研究员 Roman Pletka 指出:“尽管所有制造商都转向电荷陷阱单元架构,但我预计传统浮栅单元在未来仍将发挥不可忽视的作用,特别是对于容量或保留敏感的用例。”
然而,Hynix 表示,尽管采用了摩天大楼式堆叠的创新,但第一代 3D NAND 设计仍将外围电路保留在一侧。
最终,3D NAND 供应商将外围电路移至 CTF 下。用 SK Hynix 的术语来说,它现在是 Periphery Under Cell (PUC) 层。一方面,“4D NAND”比 CTF/PUC NAND 更短、更酷。另一方面,这最终是 3D NAND 的另一种变体,单位单元面积更小。针对较小占地面积的类似设计有不同的商标名称,例如 Micron 的 CMOS under Array (CuA)。
美光科技在 2022 年 7 月下旬宣布推出 232 层 NAND,并已投入生产,因此获得了吹嘘的资本。根据该公司的新闻稿,美光表示,其 232 层 NAND 是存储创新的分水岭,也是将 3D NAND 生产扩展到 200 层以上的能力的第一个证明。
美光还声称 业界最快的 NAND I/O 速度为 2.4 Gbps,与上一代产品相比,每个芯片的写入带宽提高了 100%,读取带宽提高了 75% 以上。此外,232层NAND包含六平面TLC生产NAND,美光表示这是所有TLC闪存中每个芯片最多的平面,并且每个平面都具有独立的读取能力。
业内分析人士认为,这可能是此次公告中最令人印象深刻的部分。由于有六个平面,该芯片的表现就像是六个不同的芯片一样。
制造:优势与挑战
在早几年的 IEEE IEDM 论坛上,三星的 Kinam Kim 发表了主题演讲,他预测到 2030 年将出现 1,000 层闪存。这可能听起来令人头晕,但这并不完全是科幻小说。Imec 存储内存项目总监 Maarten Rosmeulen 表示:“相对 NAND 闪存的历史趋势线而言,这一速度已经放缓。” “如果你看看其他公司,比如美光或西部数据,他们在公开声明中提出的内容,你会发现他们的速度甚至比这还要慢。不同制造商之间也存在一些差异——看起来他们正在延长路线图,让它放慢速度。我们相信这是因为维持这个空间的运转需要非常高的投资。”
尽管如此,竞争风险仍然足够高,这些投资是不可避免的。“前进的主要方式,主要的乘数,是在堆栈中添加更多层,”Rosmeulen 说。“几乎没有空间进行 XY 收缩并缩小内存空洞。这很难做到。也许他们会在这里或那里挤压百分之几,将孔放得更近,孔之间的缝隙更少等等。但这并不是最大的收益所在。如果你能继续堆叠更多的层,密度只能以目前的速度显着提高。”
图 2:NAND 制造中的 3D 步骤
除了整个过程的核心不可避免的问题之外,进一步堆叠似乎是合理的。
“主要挑战在于蚀刻,因为你必须蚀刻具有非常高深宽比的非常深的孔,”Rosmeulen 说。“如果你看看上一代的 128 层,这大约是一个 6、7 或 8 微米深的孔,直径仅为 120 纳米左右,具有极高的纵横比,或者可能更高一点,但并非如此很多。蚀刻技术取得了进步,可以一次性蚀刻更深的孔,但速度不会更快。您无法提高蚀刻速度。因此,如果工艺流程以沉积和蚀刻为主,并且这些工艺步骤没有提高成本效率,那么添加更多层就不再能够有效地降低成本。”
蚀刻也只是多个步骤之一。“除了蚀刻之外,您还需要用非常薄的介电层上下均匀地填充这个孔,”Synopsys 的 Lin 说。“通常,由于晶圆的化学性质,沉积几纳米的层并不容易。在这里,他们必须一路向下才能填满。有亚原子层沉积方法,但仍然具有挑战性。另一个巨大的挑战是压力。如果您构建了如此多的层并经历一些蚀刻/沉积/清洁/热循环,则可能会导致局部和全局应力。在局部,因为钻孔后,您需要在整个堆栈上切出一条非常深的沟槽。它变成了一座非常高的摩天大楼,而且摇摇欲坠。如果你开始进行一些清洗或其他过程,很多事情都可能发生,导致两座摩天大楼相互倒塌。那么你就失去了收益。通过将如此多的材料相互叠加并切割不同的图案,这可能会产生全局应力并导致晶圆翘曲,这将使其无法在晶圆厂中进行处理,因为晶圆必须是平坦的。
请记住,蚀刻是穿过不同材料层的。
Objective Analysis 的 Handy 表示,三星的解决方案是创建极薄的层。“这对整个行业很有用,因为每个人都使用几乎相同的工具来创建这些东西。”
结论
2016年,专家指出,由于技术问题,3D NAND可能会在300层或接近300层时失去动力。这似乎已被今天的谨慎乐观所取代。
“[SK Hynix 的 238 层之后]我预计未来几年层数将以大致相同的速度增加,”IBM 的 Pletka 表示。“然而,从技术角度来看,由于高深宽比蚀刻工艺,增加层数面临挑战,而且资本支出也面临挑战,因为制造芯片的时间随着层数的增加而增加。这就是为什么我们将看到新的缩放方向,通过制作更薄的层、横向缩放(例如更密集地放置垂直孔)以及使用更有效的布局(例如共享位线和逻辑缩放)(例如,使用分栅架构或存储更多每单元位数)。借助这些技术,预计 NAND 闪存的存储密度至少在未来 5 到 10 年内将继续以类似的速度增长。”
其他人也同意。Objective Analysis 首席分析师吉姆·汉迪 (Jim Handy) 表示:“当人们说我们无法超越这么多层时,这实际上是没有物理限制的。” “在半导体领域,总是有人说我们做不到。我们无法进行 20 纳米以下的光刻。现在,他们正在研究 1 纳米。三星谈到了 1,000 层。20年后,我们可能会嘲笑我们曾经认为这已经很多了。”
紫光64层NAND量产,打破外商垄断关键一战
【文/科工力量专栏作者 铁君】
日前,长江存储正式对外宣布,其基于Xtacking®架构的64层256 Gb TLC 3D NAND闪存正式量产,以满足固态硬盘、嵌入式存储等主流市场应用需求。经过多年的努力,紫光在存储芯片上的高额投资终于收获硕果。本次长江存储量产64层NAND,一定程度上缓解了三星、SK海力士、镁光等公司的垄断局面,在当下的国际环境下,格外具有意义。
存储芯片市场被三星、海力士、东芝、镁光等大厂垄断
一直以来,存储芯片市场一直被三星、海力士、东芝、镁光等大厂垄断,三星、东芝、闪迪、镁光、SK海力士等国外巨头占据80%以上的市场份额,其中三星是领头羊,市场份额约38%。在DRAM市场,三星、SK海力士、镁光占据了超过90%的市场份额,其中两家韩国企业三星和SK海力士的市场份额加起来高达70%左右。
由于中国企业在NAND Flash和DRAM两种存储芯片方面的市场占有率微乎其微,且NAND Flash和DRAM被少数国际大厂所垄断,特别是韩国企业拥有非常高的市场份额,这直接导致存储芯片价格很容易受到垄断企业决策影响。由于三星公司因Note 7自燃事件遭受了60亿美元的损失,随后,存储芯片发生暴涨,进而带动固态硬盘、内存条、以及闪存卡等存储产品的价格就开始疯涨,镁光公司的NAND Flash 64GB MLC 颗粒在几个月内涨幅超过25%。
进而使华为、小米、OPPO、VIVO等整机厂商深受其害。
由于当下比较特殊的国际局势,NAND Flash高度依赖外商除了会使国内厂商在NAND价格上任凭外商摆布,还有可能受到国际复杂环境变化的影响,一旦供应被切断,对国内IT产业的打击是几乎是毁灭性的。由此看来华为等巨头寻找国产化“备胎”的计划尤为重要。长江存储在64层NAND上取得突破,未来将有效缓解了在NAND上单一依赖进口供应的局面,但是新供应链的导入需要时间,在短期市场上,长江存储的产品仍然无法大规模替代进口。
海外并购接连碰壁 自主研发取得成功
本次,长江存储在NAND上取得突破,是十多年持续研发的成果。早在2006年,武汉就投资100亿元启动武汉新芯项目,经过多年的磨砺和成长,武汉新芯在存储器领域已经有了一定成果。之后合肥、武汉等5座城市争夺存储器基地,由于武汉新芯在这方面已经有一定基础,因而最后武汉取得了胜利。随后,紫光等国有资本对武汉大量注资,并在将武汉新芯的基础上成立组建了长江存储。
在研发路线选择上,紫光选择同时走技术引进和自主研发路线。
就技术引进来说,紫光曾经试图以每股21美元,总价230亿美元的价格全面收购镁光,结果没能完成收购。紫光也试图以38亿美元收购西部数据15%股权,然后由西部数据出资190亿美元“曲线收购”闪迪,结果因受外部势力干涉最终不得不终止。之后,还传出紫光试图出资53亿美元收购SK海力士20%的股份,但该收购传闻最终也没有结果。
在海外收购频频碰壁的同时,紫光在境外持续高薪寻找优秀的人才,并严格遵守国际商业的道德规则,“只带人不带文件”,坚持“自己的技术要靠自己研发”,紫光集团还聘请了在中国台湾省有“存储教父”之称的高启全。在整合两岸技术团队之后,长江存储开启了自主研发之路,并在2017年完成32层NAND的小批量生产,在2019年完成了64层NAND量产。
可以说,紫光用实践说明了,在当下这个大环境下,与外商合作或并购的技术引进模式很难走通,与其并购或技术合作,不如直接挖人,组建自己的团队自主研发。毕竟,技术是随着人走的,人才是一家半导体企业最宝贵的财富。
长江存储独创Xtacking架构
长江存储本次发布的64层NAND采用了Xtacking架构。根据公开资料,长江存储搞出的Xtacking架构可在一片晶圆上独立加工负责数据I/O及记忆单元操作的外围电路。这样的加工方式有利于选择合适的先进逻辑工艺,以让NAND获取更高的I/O接口速度及更多的操作功能。存储单元同样也将在另一片晶圆上被独立加工。当两片晶圆各自完工后,创新的XtackingTM技术只需一个处理步骤就可通过数百万根金属垂直互联通道将二者键合接通电路,而且只增加了有限的成本。
长江存储CEO杨士宁博士指出:
利用Xtacking技术,长江存储3D NAND闪存未来可带来更快的I/O传输速度、更高的存储密度和更短的产品上市周期。
还有材料指出:
紫光的64层的3D NAND得益于Xtacking技术,使得产品开发时间缩短三个月,生产周期可缩短20%,NAND I/O速度大幅提升到3.0Gbps,比传统3D NAND拥有更高的存储密度。这使得紫光的64层的3D NAND单位面积的存储密度可以接近国际大厂的96层3D NAND。
因此,紫光的64层NAND是具备一定市场竞争力的技术。根据长江存储的最新报道,64层NAND已于9月正式量产,2020年逐步提升产能,据业界传言,2020年底产能可望提升至月产6万片晶圆的规模。由于紫光的64层NAND性能逼近国际大厂的96层3D NAND,因而可以直接在商业市场与外商竞争。此前还有业界消息称,紫光会跳过96层NAND,直接研发128层NAND,力争在技术上进一步缩短与外商的差距,而这些消息目前还未得到官方的证实。
长江存储要重复京东方的突围之路
目前,长江存储只是技术上取得了突破,而且产能也比较有限。相对于三星、SK海力士、镁光、英特尔等国际大厂,无论在技术上,还是在市场份额上都有一定差距。长江存储在原材料、设备等方面对外商有较大依赖,在实现不被卡脖子方面依然任重道远。
因而对于长江存储正式宣布64层NAND量产,“沸腾体”或“厉害体”是不合时宜的。在未来几年内,由于要与三星等国际巨头拼刺刀,因而长江存储可能在未来5年内都很难赚到多少钱,甚至可能会重复京东方多年前连续亏损的发展历程。
比较让人担心的是,在媒体一轮“沸腾体”炒作后,之后几年因为企业营收和业绩不够“沸腾”,然后媒体又来一轮带节奏,抹黑长江存储。这并非杞人忧天,京东方就因为业绩不好看,被媒体誉为“A股亏损王”。
不过,长江存储也有很多有利的因素。首先是资本上紫光具备与国际大厂较量的实力,赵伟国曾经表示,计划筹集3700亿元为未来5年准备充足的“弹药”,因而紫光能够为长江存储提供充足的资金支持。
由于紫光体量巨大,产品线很全,不仅有NAND,还有PCIe NVMe SSD主控芯片,还有H3C这样的整机厂,内部可以进行垂直整合。
据小道消息,在2020年长江存储的64层NAND产能提升上来后,紫光麾下H3C的服务器、存储设备、智能终端将率先搭载长江存储的NAND。将来不排除向智能手机厂商组团推销展锐的SoC和长江存储NAND的可能性。这种垂直整合在长江存储NAND推向市场初期,能够提供非常关键的推动作用。一旦长江存储的NAND通过紫光系企业的推动获得市场认可,那么,国内其他企业自然会跟进,并使国外存储芯片企业在中国市场份额逐年降低。
期待在3至5年后,国人日常办公写的文稿,外出旅游的拍的照片,能够存储在国产的NAND里。
铁君(公众号 tieliu1888)
本文系观察者网独家稿件,未经授权,不得转载。
相关问答
金百达kp 230 固态硬盘怎么样?金百达KP230固态硬盘性能不错。因为该硬盘采用了TLCNAND闪存和SATAIII接口,读写速度较快且稳定,而且可靠性也较高,适合用于提升电脑的启动速度和程序运行速...
拯救者y9000p2021固态硬盘升级?然后在左边预留好的M.2硬盘位上,往卡槽里卡上需要升级的金百达KP2301TBM.2SSD固态硬盘,横向插入,有电子原件的一面向上,听到“咔哒”一声,说明已经卡到...
有哪些值得推荐的2TB固态硬盘?如果你是个人用户,据目前硬盘市场的价格和其安全性两方面来说,买块2T硬盘并不是一个较好的选择。首先,固态硬盘价格在现阶段虽然已经有所下降,但还是比机械硬...
2008年买什么样的手机比较适合?(强烈推荐使用,比原电还能挺)就是有点厚,把那层包装纸撕掉就OK啦。照我的使用情况能用2天,48小时。特色:呼吸灯,动作感应,模式快速切换,短信播报。...GPS:...
三、四千元的电脑,该怎么配?说实话,3-4千的一套的电脑很容易配。但是不知道您的需求啊!我们就姑且按高性能的游戏配置来装机吧!我们先说下这次装机的思路,更高、更快。最终价格在4000...6...