快讯
HOME
快讯
正文内容
nand flash 写入 NAND Flash层数之争:谁先触抵天花板?
发布时间 : 2024-10-12
作者 : 小编
访问数量 : 23
扫码分享至微信

NAND Flash层数之争:谁先触抵天花板?

得益于5G、大数据、云计算、物联网、人工智能等新兴产业的快速发展,存储器需求呈现倍数增长,发展空间广阔。其中,NAND Flash作为半导体存储器第二大细分市场,自然也备受关注。

回溯NAND Flash的历史

经历了半个世纪发展的半导体存储技术,如今已逐渐成熟,其衍生出的存储技术中包括Flash技术。

Flash技术分为NAND Flash和NOR Flash二种。虽然NOR Flash传输效率很高,但写入和擦除速度很慢,容量也较小,一般为1Mb-2Gb,常用于保存代码和关键数据,而NAND Flash能提供极高的单元密度,可达到高存储密度,适用于大量数据的存储。NAND Flash具有写入、擦除速度快、存储密度高、容量大的特点,也因此迅速成为了Flash主流技术。

NAND Flash技术自问世以来,已经积累了近40年的发展底蕴,并已成为存储器第二大细分市场。按存储单元密度来分,NAND Flash可分为SLC、MLC、TLC、QLC等,对应1个存储单元分别可存放1、2、3、4bit的数据。目前NAND Flash主要以TLC为主,不过QLC比重正在逐步提高。

值得一提的是,被提出很多年但一直没有商用落地的PLC终于露出水面。

今年8月初,SK海力士旗下NAND闪存解决方案提供商Solidigm在闪存峰会上展示了全球首款正在研发的PLC(五层单元)SSD。与QLC(四层单元)SSD相比,PLC SSD可在每个存储单元内存储5bit的数据。

NAND闪存从SLC、MLC、TLC、QLC及PLC一路走来,容量逐步上升,可市场更关心的是性能、可靠性、寿命、成本等问题是否也可以跟着优化。据Solidigm介绍,在相同的空间内,使用PLC SSD存储数据量可增加25%,可以用来解决固态存储未来的成本、空间和能耗等问题。该款SSD将首先用于数据中心产品,具体发布和上市时间待定。

从闪存结构来看,为满足各时期的市场需求,NAND Flash技术已从2D NAND升级到3D NAND,再到4D NAND。

时光追溯到1987年,时任日本东芝公司工程师岡本成之提出的一项发明彻底改写了人类信息时代的面貌,即2D NAND。当时东芝(2019年更名为铠侠)虽占据NAND Flash市场先机,但东芝战略重心偏向DRAM市场,忽略了NAND Flash的发展潜力。之后,英特尔和三星迅速加入市场,推出了2D NAND产品。

随后,全球厂商都围绕着2D NAND进行研发,随着2D NAND的线宽已接近物理极限,3D NAND应运而生

2007年,东芝推出BiCS类型的3D NAND。2D NAND的含义其实是二维平面堆叠,而3D NAND,顾名思义就是立体堆叠。3D NAND的到来,让NAND Flash技术直接从二维升华到三维的密度。

按英特尔的说法,2D NAND就像在一块有限的平面上建平房,这些平房整齐排列,随着需求量不断增加,平房的数量也不断增多,可面积有限,只能容纳一定数量的平房。相较于2D NAND,3D NAND则可以在同一块平面上建楼房,楼层越高,容量也就越大,在同样的平面中楼房的容积率远远高于平房,提供了更大的存储空间。可见,随着市场对存储性能需求的提升,2D NAND过渡到3D NAND是大势所趋的。

3D NAND自2007年进入大众视野后,2014年正式商用量产

2013年,三星推出第一代V-NAND(三星自称3D NAND为V-NAND)闪存。据三星介绍,V-NAND技术采用不同于传统NAND闪存的排列方式,通过改进型的Charge Trap Flash技术,在一个3D的空间内垂直互连各个层面的存储单元,使得在同样的平面内获得更多的存储空间。虽然该款堆叠层数仅为24层,但在当时却打破了平面技术的瓶颈,并使3D NAND Flash从技术概念推向了商业市场。

2014年,SanDisk和东芝宣布推出3D NAND生产设备;同一年,三星率先发售了32层MLC 3D V-NAND,这也意味着3D NAND正式商用化。继三星之后,美光也实现了3D NAND商用化。凭借其在容量、速度、能效及可靠性的优势,3D NAND逐渐成为行业发展主流。

3D之后,4D NAND悄然来临 。SK海力士在2018年研发的96层NAND Flash已超越了传统的3D方式,并导入4D方式,该款也成为了全球首款4D NAND Flash。

据了解,4D NAND技术是由APlus Flash Technology公司提出,其技术原理是NAND+类DRAM的混合型存储器,采用了“一时多工”的平行架构,而3D NAND只能执行“一时一工”。若一到十工同时在4D闪存系统执行时,其速度会比3D NAND快一到十倍。虽然相比3D方式,4D架构具有单元面积更小,生产效率更高的优点。不过,目前市面上还是以3D NAND为主。

从平房到摩天大楼,各大原厂的谋略

随着应用领域和使用场景愈发多样化,市场对NAND Flash的要求也随之提升,譬如想要更高的读写速度、最大化的存储容量、更低的功耗和成本等。可采用二维平面堆叠方式的2D NAND已经不再能满足市场的需求,这一切也促使NAND厂商必须谋定而后动,之后便沉下心来埋头研发,NAND Flash结构也从平房蜕变到摩天大楼。

采用三维平面堆叠方式3D NAND虽大大增加了存储空间,但如何突破3D NAND层数瓶颈,堆叠更高的摩天大楼,一直是市场的焦点,也是NAND厂商研发的痛点。在此之下,一场有关NAND Flash的层数之争已持续数年,NAND厂商早已吹响冲锋集结号,这一路也取得了不少的成就。

自2012年24层BiCS1 FLASHTM 3D NAND Flash之后,铠侠还研发出了48层、64层、96层、112层/128层。2021年,铠侠联手西部数据突破162层BiCS6 FLASHTM 3D NAND Flash。今年5月,西部数据与铠侠未来的路线图指出,预计2024年BiCS+的层数超过200层,如果一切按计划进行,2032年应该会看到500层NAND闪存。

最早在3D NAND领域开拓疆土的是韩国厂商三星。2013年8月,三星推出V-NAND(3D NAND)闪存,这也是全球首个3D单元结构“V-NAND”。之后,三星还陆续推出了32层、48层、64层、96层、128层、176层的V-NAND。2021年末,三星曾透露正在层数200+的V-NAND产品,目前暂未披露相关信息。

作为韩国第二大存储厂商的SK海力士也不甘落后,在2014年研发出3D NAND产品,并在2015年研发出36层3D NAND,之后按照48层、72层/76层、96层、128层、176层的顺序陆续推出闪存新产品。2022年8月3日,SK海力士再将层数突破到238层的新高度,该层数是当前全球首款业界最高层数NAND闪存,产品将于2023年上半年投入量产。

2016年,美光发布3D NAND,虽然发出时间晚于三星等上述几家厂商,但后期美光的研发实力不容小觑。在2020年美光抢先推出当时业界首款176层3D NAND,后又于2022年7月率先推出全球首款232层NAND,该产品现已在美光新加坡工厂量产。美光表示,未来还将发力2YY、3XX与4XX等更高层数。

目前从原厂动态来看,SK海力士和美光率先进入200+层时代,其中NAND闪存业界最高层数为SK海力士的238层,其次是美光的232层。主流技术NAND Flash 3D堆叠层数已跨越176层、232层、迈进238层,未来原厂还将发力200+层、300层、400层、甚至500层以上NAND技术。

在2021年IEEE国际可靠性物理研讨会上,SK海力士预测,3D NAND未来将达到600层以上。另有一些行业专家认为,3D NAND可以堆叠到1000层。可见,隔NAND Flash技术的天花板还有很高的距离。

△Source:全球半导体观察根据公开信息整理

NAND Flash未来既柳暗,又花明?

此前在5G手机、服务器、PC等下游需求驱动下,NAND Flash市场以可见的速度在增长。可今年,受疫情反复、通货膨胀、俄乌冲突等因素影响,全球形势变化多端。同时,存储器市场供需与价格波动时刻受产业发展动态影响,而作为存储器市场的主要构成产品之一,NAND Flash也不例外。

01、供需失衡

从消费端看,PC、笔电、智能手机等消费电子市场需求疲软,也影响到中上游产业链。其中,智能手机需求萎缩明显,出货量也随之减少。据TrendForce集邦咨询表示,受到传统淡季的加乘效应,使得2022年第一季智能手机生产表现更显疲弱,全球产量仅达3.1亿支,季减12.8%。

业内人士普遍认为,持续下降的最大原因是消费者使用智能手机的时间比以前更长。再加上智能手机技术更新快,新型号手机的性能与之前型号并无特别大的差距,从某种程度上看,这也降低了消费者的购买欲。

从供应端来看,TrendForce集邦咨询7月表示,由于需求未见好转,NAND Flash产出及制程转进持续,下半年市场供过于求加剧,包含笔电、电视与智能手机等消费性电子下半年旺季不旺已成市场共识,物料库存水位持续攀升成为供应链风险。因渠道库存去化缓慢,客户拉货态度保守,造成库存问题漫溢至上游供应端,卖方承受的抛货压力与日俱增。

TrendForce集邦咨询预估,由于供需失衡急速恶化,第三季NAND Flash价格跌幅将扩大至8~13%,且跌势恐将延续至第四季。

02、原厂持坚定信念

受手机与个人电脑等消费电子市场需求疲软等因素影响,美光于6月悲观预测,今年第四财季营收为72亿美元,上下4亿美元浮动,这一数据低于业界预期;又于8月再度下调第四季度业绩指引,该季度经调整营收将位于或低于此前预计的68-76亿美元区间下沿。

此前美光首席执行官Sanjay Mehrotra在财报电话会议上表示,预计智能手机销量将较去年下降约5%,而个人电脑销量可能比去年下降10%,美光正在调整产量增长,以适应需求的减弱。不过,TrendForce集邦咨询8月在最新的研究指出,受到高通胀冲击,全球对于消费市场普遍抱持并不乐观的态度,基于周期性的换机需求以及新兴地区的新增需求带领下,智能手机生产量仍会小幅上升。

SK海力士此前也预测,由于搭载存储器的电脑和智能手机的出货量将低于原来的预测,并且服务器用存储器的需求也因客户的库存优先出货,预计下半年的存储器出货量将有所放缓。不过中长期来看,数据中心的存储器需求将持续成长。

三星、SK海力士、美光、西部数据、铠侠等存储器原厂在最新财报中均表示虽然部分市场需求疲软,但都坚定看好产业未来前景,各原厂保持坚定的信心也为存储器市场扫去部分阴霾。

据TrendForce集邦咨询最新研究显示,NAND Flash仍处于供过于求状态,但该产品与DRAM相较更具价格弹性,尽管预期明年上半年价格仍会走跌,但均价在连续多季下滑后,可望刺激enterprise SSD市场单机搭载容量成长,预估需求位元成长将达28.9%,而供给位元成长约32.1%。

结 语

长远来看,NAND Flash市场前路虽柳暗,但花明。同时,NAND厂商马不停蹄地研发,今年有的再上升一个台阶,有的还在停步研发,最终谁先触抵NAND Flash层数天花板,我们静待观之。

物联网:关于Nand flash读写范围的问题

物联网:Nand flash读写范围的问题

很多时候对nand的操作都是通过主控的nand控制器直接完成,或者更多时候是通过MTD标准操作接口完成读写擦的过程,然而有些细节问题有必要在这里讨论一下,我分为以下几点进行说明:

1、擦除过程 :擦除过程是将0变成1的过程,即充电的过程(比如SLC中,当低于某个电压值表示0,高于这个电压值则表示1;而对于MLC来说可以有多个阈值,所以可以保存更多bit)。擦除过程是按块进行的,但启始地址是页地址,不过擦除过程在内部是有边界对齐的,也就是说当擦除启始地址不是块对齐时,只能擦除本块,而不能垮越到第二个块继续擦除,也就是无论我们给的地址是否页对齐,本块都将擦除,不会有任何保留。

需要注意的是:块擦除时每一页的oob区也同时被擦除掉了,所以一般擦除前先读取块的第一页的两个字节看是否为0xff(512Byte页大小nand的坏块信息放在第6个字节中,ECC占用0、1、2、3、6、7字节;2k页大小的nand有24位ECC放在oob区的40-63字节处),不是的话就不要擦除,0xff表示正常,其它值表示错误,否则将会擦掉所有坏块信息,尤其是出厂时写入的。

2、写入过程 :写入过程就是将1变成0的过程,即,放电降压的过程,理论上在写之前一定要先擦除,但实际上只要之前的值为1,不用擦也可以写入(举个例子,比如某一存储单元存放的值为7,那么可以写入比7小的值,比如6,然而反过来则不行,即,未擦之前是不能将6改写成7的)。写入过程可以是任意地址,如果不满一页(开头、中间、结尾都可以任意写入),剩下没有写入的存储单元不会因为未写而变成1,而是保持之前的状态不变(因为只有擦除才会变成1)。写入过程在内部也是有边界对齐的,也就是说写入起始地址不是页对齐时,只能从当前字节写到本页结尾,而不能垮越到第二个页继续写,即使写入长度够长,也不能一次写入垮越两页。

3、读取过程 :读取过程只是通过解码电路将存储阵列中的电压信号变换成数字信号,并输出到nand的页缓冲器中,然后依次按一个或多个字节顺序读出的过程。读取过程在nand内部也是有边界对齐的,也就是读取起始地址不是页对齐时,只能从当前字节开始读到本页结尾,而不能垮越到第二页继续读取,即使读取长度够长,也不能一次垮越两页读取。

4、读写过程 :前面的读写过程中的页大小问题,假如:page=2048Byte,oob=64Byte,那么,理论上要读写oob时,需要给出大于2048的列地址,但实际上在读取前面的2048字节数据区时,如果在不重新下达命令并给出列地址的情况下而继续向后读写数据,是可以直接读写oob区的,除非是要单独对oob区进行操作。其实对于oob区来说,nand并没有做过多特殊处理,就是多出来的数据区而已,只是大家约定在这里可以存放一些校验和坏块信息等,如果不存放这些信息,那么oob就是普通数据区。

5、操作地址 :对一个1GByte的nand,可以用30位二进制来表示地址,即A0-A29,当我们希望读取某一个地址中的数据时,那么应该怎样给出这个地址呢,比如我要访问0x9000000这个地址开始的数据,那么这个地址又是否包含oob区域呢(实际上并不包含)。

首先对于nand操作本身来说就没有比页更小的单位(但是可以按字节读写),所以我们给出的地址其实是要进行地址分解的,分解为行地址(页偏移)和列地址(页内偏移),比如K9K8G08U0B(page=2048Byte)就从A11开始分,A0-A10为列址,A11-A29为行地址,那么oob怎么访问呢,

举个例子:

假如我们要访问的地址是2050,那么现在开始分解,首先将2050右移11位,即除以2048进行页对齐处理,其实就是将A0-A10作为列址,A11-A29作为行地址,分别放到两个变量中结果就是row=1,col=2,那么最后读写的数据到底是什么呢(如果包含oob区域,那读写的数据肯定是oob区的数据),实际上就是跳过第一页(跳过包括oob区域)到第二页中读写2这个地址的数据。

到这里我们应该清楚了,不管用户给出什么样的地址,这个地址偏移都是针对数据区域而不会包含oob区的,如果非要读取oob区,那么在分解地址的时候,可以将列地址加上2047(col=col+2047),否则读写的就只是数据区(如果读完数据区继续向后读写的话也可以读写到oob区,因为系统会自动累加列地址)。

以上信息只是在s5pv210作为主控,操作K9K8G08U0B得出的结论,不同主控和nand型号可能会略有不同。

相关问答

嵌入式设计中有必要同时具备nor flash nand flash 吗?

性能差别:于Flash写入速度其实写入擦除综合速度NandFlash擦除简单NorFlash需要所位全部写0(要说明Flash器件写入能1写0能0写1,说其写入式按照逻辑与进行譬原...

inand是什么文件?

inand是一个文件系统的缩写,全称为"InternalNANDFlashDisk",意为内部NAND闪存磁盘。它是一种用于嵌入式系统中的存储设备,通常用于存储操作系统、应用...

Nand Flash 和Nor Flash 有什么区别?求解?

1、写入/擦除操作的时间不同【nandflash】:擦除NAND器件以8~32KB的块进行,执行同一写入/擦除的操作时间为4ms【norflash】:擦除NOR器件是以64~128KB的块.....

iphone13闪存是nvme吗?

是的。iPhone13系列上依旧支持Nvme协议;相比Android手机厂商宣传的UFS3.1存储介质,苹果存储使用的是Nvme协议的存储介质读写速度更快,发热也比较大;当然电...

norflash和 nandflash 的区别?

NANDflash和NORflash的区别一、NANDflash和NORflash的性能比较flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的....

NAND Flash 和Nor Flash 到底有什么区别?

NANDFlash和NorFlash是两种不同类型的闪存存储器。区别如下:1.读取速度不同NorFlash在小容量数据存储、读取速度和随机访问方面表现优异,读取速度比NAN...

怎么将数据 写入 stm32内部 flash 中?

stm32有写flash函数调用相应的库函数,可以写一个字半个字还可以擦除把adc读回的值用写flash函数写到未使用的地址就可以了需要提前查看地址使用量,ide都支...

ns读写速度?

NS(NANDflashstorage)读写速度是指在存储芯片中进行读取和写入数据的速度。它通常以MB/s(兆字节每秒)或GB/s(千兆字节每秒)为单位来衡量。具体的NS读写速...

flash 未被 写入 时是什么值?

未写入时FLASH里面的数据为全1,即0xFF。只能由1—>0写入,不能由0—>1写入,即如果已经写入过了,则需要先擦除(擦除后数据变为全1)再写入。示例:0...

我想让安卓系统每次开机自动运行某款软件,比如dsa善领电子狗的方法?

你好这个毛病在实际装机上我遇到过几回解决方法分二步第一步安装DSA2010P46版第二部在卡根目录下建立一个文本文档写入\nandflash\DSA\DSA.EXE(注意...

 火星登陆  湖北郧阳医学院 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部