SSD故事会(2):SSD内部结构是怎样的
【PConline 杂谈】 SSD固态硬盘是这些年在存储技术上重大进步,它带来了电脑主存储颠覆性地改变。升级SSD不仅是性能上的小幅度提升,SSD将利用具有革命性的随机访问速度、卓越的多任务处理能力、杰出的耐久度及可靠性来改变您的电脑使用体验。毫无疑问,SSD将是未来存储的主角。这一期的SSD故事会,就带大家了解最基本的SSD组成主要部件,主控芯片、NAND闪存芯片及固件算法!
SSD速度上远抛开机械硬盘:
传统的机械硬盘(HDD)运行主要是靠机械驱动头,包括马达、盘片、磁头摇臂等必需的机械部件,它必须在快速旋转的磁盘上移动至访问位置,至少95%的时间都消耗在机械部件的动作上。
SSD却不同机械构造,无需移动的部件,主要由主控与闪存芯片组成的SSD可以以更快速度和准确性访问驱动器到任何位置。传统机械硬盘必须得依靠主轴主机、磁头和磁头臂来找到位置,而SSD用集成的电路代替了物理旋转磁盘,访问数据的时间及延迟远远超过了机械硬盘。SSD有如此的“神速”,完全得益于内部的组成部件:主控--闪存--固件算法。
主控、闪存及固件算法三者的关系:
SSD最重要的三个组件就是NAND闪存,控制器及固件。NAND闪存负责重要的存储任务,控制器和固件需要协作来完成复杂且同样重要的任务,即管理数据存储、维护SSD性能和使用寿命等。
主控:
控制器是一种嵌入式微芯片(如电脑中CPU),其功能就像命令中心,发出SSD的所有操作请求----从实际读取和写入数据到执行垃圾回收和耗损均衡算法等,以保证SSD的速度及整洁度,可以说主控是SSD的大脑中枢。目前主流的控制器有Marvell、SandForce、Samsung、Indilinx等。像Marvell各方面都很强劲,代表型号为Marvell 88SS9187/89/90主控,运用在浦科特、闪迪、英睿达等品牌的SSD上。
SandForce的性能也不错,它的特点是支持压缩数据,比如一个10M的可压缩数据可能被他压成5M的写入硬盘,但还是占用10M的空间,可以提高点速度,最大的特点是会延长SSD的寿命,但是CPU占用会高点而且速度会随着硬盘的使用逐渐小幅度降低。代表型号为SF-2281,运用在包括Intel、金士顿、威刚等品牌的SSD上。
Samsung主控一般只有自家的SSD上使用,性能上也是很强悍的,不会比Marvell差多少。目前三星主控已经发展到第五代MEX,主要运用在三星850EVO、850PRO上。
固件算法:
SSD的固件是确保SSD性能的最重要组件,用于驱动控制器。主控将使用SSD中固件算法中的控制程序,去执行自动信号处理,耗损平衡,错误校正码(ECC),坏块管理、垃圾回收算法、与主机设备(如电脑)通信,以及执行数据加密等任务。由于固件冗余存储至NAND闪存中,因此当SSD制造商发布一个更新时,需要手动更新固件来改进和扩大SSD的功能。
开发高品质的固件不仅需要精密的工程技术,而且需要在NAND闪存、控制器和其他SSD组件间实现完美整合。此外,还必须掌握NADN特征、半导体工艺和控制器特征等领域的最先进的技术。固件的品质越好,整个SSD就越精确,越高效,目前具备独立固件研发的SSD厂商并不多,仅有Intel/英睿达/浦科特/OCZ/三星等厂商。
NAND闪存:
SSD用户的数据全部存储于NAND闪存里,它是SSD的存储媒介。SSD最主要的成本就集中在NAND闪存上。NAND闪存不仅决定了SSD的使用寿命,而且对SSD的性能影响也非常大。NAND闪存颗粒结构及工作原理都很复杂,接下来我们会继续推出系列文章来重点介绍闪存,这里主要来了解一下大家平常选购SSD经常接触到的SLC、MLC及TLC闪存。
SLC/MLC/TLC闪存:
三种闪存状态(图片来自网络)
这几年NAND闪存的技术发展迅猛同,从企业级标准的SLC闪存到被广泛运用在消费级SSD上的MLC闪存再到目前正在兴起的TLC闪存,短短时间里,我们看到NAND技术显著进步。对SLC、MLC及TLC闪存怎么理解呢?简单来说,NAND闪存中存储的数据是以电荷的方式存储在每个NAND存储单元内的,SLC、MLC及TLC就是存储的位数不同。
单层存储与多层存储的区别在于每个NAND存储单元一次所能存储的“位元数”。SLC(Single-Level Cell)单层式存储每个存储单元仅能储存1bit数据,同样,MLC(Multi-Level Cell)可储存2bit数据,TLC(Trinary-Level)可储存3bit数据。一个存储单元上,一次存储的位数越多,该单元拥有的容量就越大,这样能节约闪存的成本,提高NAND的生产量。但随之而来的是,向每个单元存储单元中加入更多的数据会使得状态难以辨别,并且可靠性、耐用性和性能都 会降低。
闪存的类型各自有优缺点,如何在保证SSD的性能,耐久度,寿命的前提下,提高存储密度,增大SSD的容量,降低SSD的制造成本,这才有可能迎来下一个个人存储革命的开端。
总结 :SSD带来极速体验的前提是拥有着非常复杂的技术在支撑,并不同机械硬盘通电即使用,SSD需要正确地使用方法及后期更多的维护,而这些的基础是您对SSD有足够的了解,这也是我们推荐小白系列讲堂的目的,下一期我们将继续探讨神秘的SSD技术。
3D NAND架构解析
1前言
由于2D NAND自身技术缺陷,行业预测10-12nm将是其极限。3D NAND, 即立体堆叠技术,如果把2D NAND看成平房,那么3D NAND就是高楼大厦,建筑面积成倍扩增,理论上可以无限堆叠。这可以摆脱对先进制程工艺的束缚,同时也不依赖于极紫外光刻(EUV)技术,而闪存的容量/性能/可靠性也有了保障。
2 3D NAND FLASH架构分析
3D NAND目前大多使用55 nm以上的工艺,一般3D谈的是层数。下图是Tech Insights 2020整理的NAND Flash Roadmap,包含2D NAND及3D NAND,长江存储已被纳入图表中,成为第五家有能力生产3D NAND的厂家,其预测结果也符合市场现状。目前而言,3D NAND闪存主要由三星/海力士/镁光-英特尔/东芝/闪迪垄断99%市场份额,且每家都有自己特殊的工艺架构,三星/海力士的CTF(电荷俘获),镁光/英特尔的FG(多晶硅浮栅),东芝/闪迪的P-BiCS,长江存储的Xtacking。
图1 Tech Insights NAND Flash Memory Technology
2.1镁光/英特尔的FG(多晶硅浮栅)架构
镁光/英特尔主要是采用OPOP(氧化硅/多晶硅)堆叠技术,前栅工艺,存储单元是浮栅结构。图2是DC-SF(双控制栅及环绕浮栅)架构示意图,图3是其加工工艺流程,(a)存储区OPOP孔干法刻蚀成型,(b)回刻氧化硅,(c)沉积绝缘层IPD,(d)填充多晶硅,(e)湿法刻蚀多余的多晶硅并沉积隧穿氧化层,(f)填充多晶硅形成完整存储结构。
图2 双控制栅及环绕浮栅架构
图3 DC-SF NAND 工艺流程
2.2东芝P-BiCS架构
东芝于2009年提出P-BiCS结构,如图4所示,器件结构是U型环栅结构,前栅工艺,ONO电荷俘获,OPOP(氧化硅/多晶硅)堆叠技术。工艺难点是U型沟槽的制作,以及随着堆叠层数的增加,刻蚀工艺难度进一步加大;因此东芝只在64层架构以下使用OPOP堆叠,而64层及以上产品堆叠采用ONON(氧化硅/氮化硅)技术。
图4 (a)P-BiCS架构和(b)工艺流程
2.3三星TCAT CTF架构
三星于2009年提出TCAT结构,如图5所示,器件结构是垂直管状环栅结构,hk-金属后栅工艺,ONO电荷俘获,ONON(氧化硅/氮化硅)堆叠技术。图6是其加工工艺流程,(a)存储区ONON孔干法刻蚀成型且完全填充多晶硅,栅沟槽刻蚀成型,(b)湿法刻蚀去除氮化硅,(c)沉积ONO-high-k,PVD沉积金属栅,(d)刻蚀多余的金属W,防止栅短路。其工艺相对于东芝和镁光复杂且难度大,尤其是存储层ONO沉积完后还要沉积金属栅对film挑战极大,同时也意味着ONON堆叠难以减薄,就限制了容量的增加。
图5 TCAT架构
图6 TCAT工艺制程
为了解决此工艺复杂,堆叠难以压缩的难题,2012年海力士提出了SMArT (Stacked Memory Array Transistor)结构,如图7所示。器件结构也是垂直管状环栅结构,hk-金属后栅工艺,ONO电荷俘获,ONON(氧化硅/氮化硅)堆叠技术。创新之处在于ONO存储层在孔内部,同时多晶硅也不全部填满沟道,大约只有8nm左右的多晶硅,剩余的用氧化硅填充。这种结构可以减薄ON堆栈层的厚度,同时薄的沟道多晶硅的Vth阈值电压分布更均一,也削弱了晶界对沟道电流的阻碍作用。因此这种结构在工业量产中得到了最广泛的应用。东芝/三星/海力士/长江存储都基于此核心结构开发出自己的产品。
在3D NAND中,由于多晶硅沟道的阻力更高,流动性更低。因此,为了达到2D NAND 的性能,3D NAND必须使用更好的电路结构、算法和控制器。
图7 SMArT架构
2.4 3D NAND CTF vs FG
目前3D NAND存储层分两种结构,一种是浮栅型Flash器件,厂商为镁光,一种是电荷俘获型SONOS器件,厂商为三星/海力士/东芝/长江存储。
浮栅型器件特点是:
(1)浮栅中电荷可以自由移动,单一缺陷就可以导致电荷流失;
(2)相邻元件存在浮栅间电容耦合干扰;
(3)多级存储需要控制存储电荷数量;
(4)栅结构复杂;
(5)Reliability好;
(6)堆栈方式为OPOP。
电荷俘获型SONOS器件的特点是:
(1)氮化物存储层中电荷被存在电荷阱中,电子无法自由移动;
(2)相邻元件不存在耦合干扰;
(3)可实现多物理位存储;
(4)栅结构简单,利于工艺集成;
(5)堆栈方式为ONON。
2.5 3D NAND的工艺难点
与2D NAND缩小Cell提高存储密度不同的是,3D NAND只需要提高堆栈层数。从2013年三星推出了第一款24层SLC/MLC 3D V-NAND,到现在主流96/128层TLC 3D NAND产品问世,随着层数迈进100+层,其工艺难度也愈发困难。
(1)ONON/OPOP层数堆叠
随着层数24 /48/64/96 /128层等快速增加,对堆叠的薄膜有了进一步严格要求,均匀性、缺陷控制、最小平面内位移和氮化物收缩、热应力后可接受的晶圆形变,以及高氮化物/氧化物湿蚀刻选择性等。层数堆叠的同时也会对每对薄膜进行减薄,这样对器件的可靠性也做出了更高的要求。
图8 薄膜在堆叠过程中的张应力和压应力
(2)高长宽比(HAR)通孔蚀刻
通孔的形成需要等离子干法刻蚀,每个12寸晶圆上需要刻上超过上千万亿个孔,(长宽比大于 50),挑战当前等离子蚀刻技术的物理极限。目前只有美国泛林半导体设备技术有限公司垄断此技术。
刻蚀的主要问题是:
(1)不完全蚀刻、
(2)通孔中间弯曲和扭曲、
(3)通孔顶部和底部之间CD变化大,
(4)底部通孔不圆等,如图9所示。
此类缺陷可能导致短路、相邻存储单元之间的干扰以及其他电学性能问题。
为了缓解 HAR 蚀刻的挑战,对于超过64层的3D NAND,主流做法是用两个64层堆叠成128层 3D NAND。
图9 干法刻蚀通孔遇到的问题
(3)WL台阶的设计与刻蚀
由于器件结构是垂直管状环栅结构,因此需要特别设计出台阶结构,通过Contact引出栅结构。图10(a)给出了实现台阶的工艺方法,即Trim/Etch/Trim/Etch,图10(b)为成型后的台阶。需要精确控制台阶的刻蚀层数和CD的均匀性,保证每个Contact都能落到对应的台阶上,不能发生错位。而当层数高于64层时,为了节省Mask和降低工艺难度,就需要设计新的台阶结构。
图10(a)台阶刻蚀工艺流程示意图(b) 成型后的台阶
3 3D NAND现阶段主流产品工艺水平
3.1现阶段主流产品
为能更缩小存储单元尺寸,除了工艺持续缩小及将存储单元3D化外,还有一种方式就是增加每存储单元能存储的 bit 数目上。SLC存储ㄧ个bit数据,也就是二个状态 (0,1) ; MLC 存储两个bit数据,所以是四个状态 (00,01,10,11) ; TLC 三个bit,八个状态(000,001,010,011,100,101,110,111) ; QLC四个bit,十六个状态 (0000,0001,…. 1111),如下图所示。从SLC到QLC,成本极大降低,随之而来的是擦写次数会大幅降低,从100K次降到不足1K。为了弥补这个不足,需要系统优化区块管理,这样即使只有1K次擦写,也足够适用于消费者个人使用。企业级用户就只能用SLC和MLC产品。
目前只有三星、海力士、东芝、镁光-英特尔、长江存储五家公司能够量产。各家的 3D NAND存储单元及技术都不相同,目前市场上3D NAND最多的是64层和96层TLC产品。图14是目前市场上3D NAND的主流产品,浅蓝色是2018年量产的64层TLC产品,深蓝色是2019年量产的96层TLC产品,从工艺水平/良率/市场份额来看,三星都走在前头。
图14 3D NAND厂商量产产品
像苹果公司最新旗舰手机iPhone 11系列都已经用上了东芝海力士三星的最新96层TLC产品。华为/LG/小米/Apple iPad/Google Surface/Dell/三星手机也都用上了64层TLC产品。
3.2各大厂主流工艺分析
为了增加存储单元面积,降低生产成本,目前各大厂都采用了把外围电路做在存储单元的下方,即Peri under Cell, 外围电路成型以后,需要经过化学机械研磨CMP工艺使之平坦化,这将使得CMP制程的难度和重要性得以提高。
图15 Peri under Cell结构
(a)三星92层工艺
三星的92层是一次刻蚀成型而成,技术难度最高。采用垂直管状环栅结构,金属后栅工艺,ONO电荷俘获,ONON(氧化硅/氮化硅)堆叠技术,ON对做了减薄处理,台阶区长度相对东芝减小了11um,如图16所示。
图16 三星3D NAND产品(a)64层,(b)92层,(c)台阶区结构
(b)东芝/西部数据96层工艺
东芝的96层是由两个48层堆叠而成,和三星一样采用垂直管状环栅结构,金属后栅工艺,ONO电荷俘获,ONON(氧化硅/氮化硅)堆叠技术,ON对做了减薄处理,台阶区相对于64层只增加了4um的宽度,如图17所示。
图17 东芝3D NAND产品(a)64层,(b)96层,(c)台阶区结构
(c)镁光/海力士96层工艺
镁光和海力士的96层也都采用了两个48层堆叠而成。从图18中可以看出来这三家对于上下通孔中间的接触层各有不同。镁光是氧化铝/氧化硅/氮化硅三明治结构,海力士没有过渡层,东芝只有氧化硅层。由于需要联通上下通孔,即ONO层是公用的,则对Alignment对准有极高的要求,这也是多层堆叠的技术难点所在。
图18 东芝/镁光/海力士上下通孔中间层对比
(d)长江存储128层工艺
长江存储目前量产的是32层64Gb SLC/MLC产品和64层256Gb TLC产品,采用特有的Xtacking工艺,如图19所示,可在一片晶圆上独立加工负责数据I/O及记忆单元操作的外围电路。这样的加工方式有利于选择合适的先进逻辑工艺,以让NAND获取更高的I/O接口速度及更多的操作功能。存储单元同样也将在另一片晶圆上被独立加工。当两片晶圆各自完工后,XtackingTM技术只需一个处理步骤就可通过数百万根金属VIA将二者键合接通电路,而且只增加了有限的成本。
图19 长江存储存储阵列边缘台阶界面图
长江存储的128层是通过两个64层堆叠而成,其结构类似于三星/东芝等。
3.3 3D NAND即将量产产品展望
(1)112层/128层/144层/170层及大于200层以上产品,>10Gb/mm2
(2)海力士的9x层QLC以及128层/176层产品
(3)长江存储的128层TLC/QLC产品
(4)3个64层或以上堆叠的3D NAND产品
(5)其他新型3D NAND产品
4 3D NAND总结
以上文章主要简述了几种常见的3D NAND Flash结构和工艺和现阶段主流产品工艺水平等。随着层数的进一步增加,难度也进一步增大,各个大厂都将面临着生产成本的急速增加。这种沟道垂直结构对制造过程(新材料属性)和设备(精确到原子层控制)提出了更加严格的要求。随着许多新型态的非易失性存储器已研发出来,如MRAM/ FRAM/ RRAM/ PCRAM/ 3XPoint,未来或许能取代现有的DRAM/NAND Flash存储器。但在此之前,3D NAND将主导非易失存储器的市场。
相关问答
什么是 NAND 芯片?NAND芯片是一种闪存芯片,广泛应用于各种数字设备,如闪存卡、USB闪存驱动器、固态硬盘等。它是一种非易失性存储器,可以长期存储数据,而不需要任何电源支持。...
SLC是什?1、SLC全称为Single-LevelCell,单层单元闪存。SLC为NAND闪存架构,其每一个单元储存一位数据。2、SLC闪存始终处于以下两种状态之一:已编程(0)或已擦除(1)...
slc是什么意思?MLC的每个单元是2bit的,相对SLC来说整整多了一倍。不过,由于每个MLC存储单元中存放的资料较多,结构相对复杂,出错的几率会增加,必须进行错误修正,这个动作...
3d nand 的优点?3DNAND可带来更好的性能,更低的成本以及更高的密度。3DNAND也称为V-NAND,旨在克服2DNAND在容量方面的限制。3DNAND架构可在不牺牲数据完整性的情况下扩展...
TLC全名?TCL是TheCreativeLife的缩写,意为创意感动生活TLC芯片技术是MLC和TLC技术的延伸,最早期NANDFlash技术架构是SLC(Single-LevelCell),原理是在1...
内存卡原理及构造?内存卡是一种用于存储数字数据的可移动存储介质。它通常使用在数码相机、移动电话、智能手机、平板电脑、便携式游戏机等电子设备中。内存卡的原理和构造可以...
固态硬盘的 结构 和工作原理是什么-ZOL问答SSD硬盘的工作原理是什么,固态硬盘的结构是什么?为什么固态硬盘比机械硬盘快....主控芯片和缓存芯片以外,剩下的大片区域就是NANDFLASH芯片了,目前NANDFLASH...
iphone13闪存是nvme吗?相比Android手机厂商宣传的UFS3.1存储介质,苹果存储使用的是Nvme协议的存储介质读写速度更快,发热也比较大;当然电脑上的Nvme协议存储介质发热同样比较严重,...
SLC,MLC和TLC芯片三者的区别?SLC、MLC和TLCX3(3-bit-per-cell)架构的TLC芯片技术是MLC和TLC技术的延伸,最早期NANDFlash技术架构是SLC(Single-LevelCell),原理是在1个存...
如果CPU是沙子做成的,那内存和闪存是什么做成的?既然能够提出这种问题,也说明了提问的同志有一定的计算机基础。笔者大部分时间都是在和“软件工程”打交道,并不是非常的了解硬件知识,笔者也非常后悔,后悔很多年...