三星的3D V NAND的堆叠层数由32层提高到48层
Techinsights讨论三星的32层与48层3D V-NAND在结构上的不同
三星己经开始量产它的48层3DVNAND芯片(48层单元栅在一个NAND中串接在一起,称作第三代)应用在SSD中,如SSDT3(mSATA及850EVOV2),NVMeSSD(PM971-NVMe)以及企业级SSD(PM1633a)
在三星最新的48层器件中是采用16个NAND管芯堆叠一起,然后用引线键合技术连结。三星的48层V-NAND器件中集成了512GB存储单元,表示每个NAND芯片是32GB(256GB)。三星的32层(第二代)V-NAND芯片包括10.67GB(85.33GB)。它的第二代与第三代V-NAND有什么不同,不会仅是32层与48层数之间的差异。
TechInsights从单元结构,材料,布局及封装全面进行分析与比较,下面是其中的亮点;
存储器密度及芯片尺寸
图1表示16个48层V-NAND芯片与两个F-Chips封装在一个MCP(multichip package)中,32层V-NAND芯片面积是84.33平方毫米,而48层芯片为99.8平方毫米,如图2所示,表示它的长度更长,面积增加了17.3%。以单位面积的存储器密度计增加到每平方毫米2.57Gb。相比先进制程的2D NAND器件如东芝的15纳米是TLC NAND是1,28Gb/mm平方.
在管芯布局方面的关键不同如下;1),平面NAND存储器阵列的面积,2),位线开关和页缓冲区的面积,3),逻辑及外围电路的面积,及4),增加F芯片。每个管芯有两个区。NAND存储器阵列的面积由48.9平方毫米增加到68.7平方毫米,表示增大40.3%。位线开关电路面积与32层一样,页缓冲区的面积减少20%。逻辑及外围电路面积减少34.8%,换句话说三星大大缩小页缓冲电路与外围电路的面积,可以进一步增加存储器密度及提高管芯的效率。在MCP结构中16芯片堆叠,每个芯片的厚度己由132微米缩减至36微米。
Figure 1. Samsung 48L V-NAND device stacked withsixteen vertically stacked NAND dice and two F-Chips, teardown image(Source: TechInsights)
Figure 2. Comparison die photograph with 32L and 48LV-NAND (Source: TechInsights)
采用Fchip新的结构
在去年ISSCC 2015会上三星提出在NAND闪存MCP中引入嵌入式F Chip结构。总体上SSD的硬件结构是由存储器控制器,NAND闪存及DRAM组成。
.F Chip实现点对点在存储器控制器与F Chip之间的I/O总线的拓扑联结,当在沟道的存根处遭受到不受欢迎的反射时。除此之外,F Chip减少在F Chip到NAND接口的电容负载,通过执行和平均分配在F Chip与NAND之间的两个内部I/O总线。它支持由I/O讯号由存储器,控制器到NAND器件的时间再分配模式。
由于在带异步接口的NAND器件中固有的时序抖动,F Chip同样可减少时间容限。一个F Chip连接8个V NAND芯片,表示在一个16个芯片堆叠结构中嵌入两个F Chip。图3表示在MCP中去除F Chip后的结构图。F Chip包括电路模块,如ROM,DCgenerator,CMD编码器,数据通路,TX/RX及引线键合区。F Chip芯片面积为0.057平方毫米。
Figure 3. F-Chip die removed from Samsung 48L 3DV-NAND MCP (Source: TechInsights)
存储器单元阵列结构与架构
与第二代32层VNAND比较,显然第三代48层VNAND单元结构有更多数量的单元栅,意味着工艺集成具有更大挑战及可控性。硅沟道孔及CSL(common source line)的沟漕付蚀工艺的深宽比分别为约33及26,相比32层V NAND更高。CTF(charge trap flash memory)或者CTL(charge trap layer)通常采用铝基的高k介质阻挡层。
选择晶体管包括SSL( string select line)及GSL(ground select line),dummy gates及bitline strap的设计与上一代一样,但是SEG(silicon epitaxial growth)硅外延的高度减小。32层V NAND器件有三层金属层,而48层V NAND有四层金属层。一个附加的新的金属层(通常称M0)加在CSL/MC层上,可能是为了提高单元设计的效率。
1y nm 2D和48层3D V NAND的成本比较
1y nm 2D平面型NAND,如16nm或15nm MLC/TLC NAND器件,它的存储器单元阵列及外围电路包括well/active/isolation(SA-STI,自对准STI)形或;cell FG/CG及周围栅的形成以及接触与互联(金属和贯孔)形成。显然在2D 平面型 NAND器件制造工艺中需要采用DPT(两次图形曝光),或者QPT(皿次图形曝光),甚至空气栅工艺来作存储器单元阵列中的active,字线及位线的图形。因此在1y nm NAND制造中通常要40-45张掩膜。
另一方面,在32层3D V NAND器件中,采用垂直硅通孔技术( CHT),及20nm的位线 half pitch(用DPT两次图形曝光)需要使用超过50张掩膜,由于反复修整在存储器阵列的边缘要与每个钨接触孔连接的如楼梯状的栅线的图形。而在48层3D V NAND中需要56张掩膜。
尽管48层与32层在存储器结构/材料及单元设计是一样的,但是栅堆叠层数的增加会引起光刻工艺的吞吐量,缺陷及成品率的问题。随着NAND制造商都热切量产48层,64层,96层,甚至128层时提高成品率成为首要任务,以及期望位成本继续呈陡坡的下降。
未来NAND闪存的技术
与3D NAND一样,2D器件的竞争发展也在进行之中。显然2D NAND的尺寸继续缩小可能己达极限,因此主要的NAND供应商如三星,东芝,新帝,美光,英特尔后SK海力士都在攻克3D NAND,通过园柱形沟道把NAND垂直的串在一起。当单元栅堆叠的层数越来越多时,相比2D NAND有望可提供更高的密度,高功能,更高可靠性及更低功耗。时至今日三星的32层及48层3D V NAND及Micron/Intel的32层 3D NAND开始量产供应市场。
东芝,新帝和SK海力士,它们的3D NAND还未量产,比预期的拖长时间。三星领先的32层及48法3D V NAND是基于电荷俘获型闪存(CTF)架构,或者称电荷俘获层(charge trap layer,CTL),采用高k阻挡层及金属栅。CTL是一层非导电层,如氮化硅层,可作为一层绝缘层,它与其它的存储器单元一样,设计用来减少单元与单元的干扰,降低误操作及增加可靠性。
由于3D NAND单元架构对于单元与单元之间的干扰不敏感,因此写入数据速率可大幅提高,功能更佳。编程的步数大幅减少及功耗低。目前48层的3D NAND,相比32层己经非常接近于2D NAND的每位价格曲线。业界正期望未来的64层 3D NAND从价格方面能比过2D NAND。未来3D NAND将继续向64层,96层及128层发展,分析它们的困难在于多晶硅沟道的迁移率,深宽比付蚀,以及缺陷与成品率控制等。
回答开初的问题三星的48层3D V NAND是否仅是垂直的堆叠层数增多?显然不是。除了垂直堆叠层数增加之外,为了提高单元的功能与效率采用多层金属层,新增嵌入式F Chip,并封装在一体,以及减少逻辑与外围电路面积近30%,以及增加芯片效率。是一次十分肯定的3D V NAND集成的进步。
智能座舱之存储篇第三篇---NAND Flash 一眼就看明白了
上期内容我们重点说了NAND FLASH本身的一些特殊性,比如写之前要进行擦除,而且存在坏块的可能性性,所以很多车厂在评估NAND FLASH的时候,会评估目前容量的冗余量是多少,要保障有足够多的空间去预防坏块的产生后的数据搬移。
这期内容重点说说NAND FLASH的一些操作特性,怎么进行控制和读取的。这期的内容有点硬核,需要有一些专业知识的人进行阅读,科普类的文章咱们下期继续。
NAND FLASH的硬件特性介绍
上图是镁光 NAND FLASH MT29F1G08ABAEAH4的引脚(Pin)所对应的功能,简单翻译如下:
1. I/O0 ~ I/O7:用于输入地址/数据/命令,输出数据
2. CLE:Command Latch Enable,命令锁存使能,在输入命令之前,要先在模式寄存器中,设置CLE使能
3. ALE:Address Latch Enable,地址锁存使能,在输入地址之前,要先在模式寄存器中,设置ALE使能
4. CE#:Chip Enable,芯片使能,在操作Nand Flash之前,要先选中此芯片,才能操作
5. RE#:Read Enable,读使能,在读取数据之前,要先使CE#有效。
6. WE#:Write Enable,写使能,在写取数据之前,要先使WE#有效。
7. WP#:Write Protect,写保护
8. R/B#:Ready/Busy Output,就绪/忙,主要用于在发送完编程/擦除命令后,检测这些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成.
9. Vcc:Power,电源
10. Vss:Ground,接地
11. N.C:Non-Connection,未定义,未连接。
实际项目的NAND FLASH原理图
上图中我们可以发现有两个地方需要上拉电阻R/B#:、WP#,其他都是CPU同nand flash直接相连接。通过查询flash 的datasheet可以发现,这两个引脚是开漏极输出,需要上拉电阻。
而且可以看到电路设计中WP#引脚一端接上拉电阻,一端通过二极管和0欧姆电阻连接到CPU复位引脚,CPU主芯片平台的复位是低电平复位,WP#引脚是低电平的时候写保护有效,这样做的目的就是,在复位期间,即CPU复位引脚为低电平期间此时WP#引脚也为二极管电压(0.7V)为低电平,为写保护状态,在复位期间,CPU引脚状态不定,容易对flash进行误操作。这样做的目的就是硬件实现在CPU复位期间,flash是写保护状态,不允许写入的。
很多时候掉电产生的擦除数据,导致数据丢失无法开机、无法保存掉电记忆等等问题都可以使用这个方案来对策解决问题。
为何需要ALE和CLE
比如命令锁存使能(Command Latch Enable,CLE)和地址锁存使能(Address Latch Enable,ALE),那是因为,Nand Flash就8个I/O,而且是复用的,也就是,可以传数据,也可以传地址,也可以传命令,为了区分你当前传入的到底是啥,所以,先要用发一个CLE(或ALE)命令,告诉nand Flash的控制器一声,我下面要传的是命令(或地址),这样,里面才能根据传入的内容,进行对应的动作。否则,nand flash内部,怎么知道你传入的是数据,还是地址,还是命令啊,也就无法实现正确的操作了。
Nand Flash只有8个I/O引脚的好处
1. 减少外围引脚:相对于并口(Parellel)的Nor Flash的48或52个引脚来说,的确是大大减小了引脚数目,这样封装后的芯片体积,就小很多。现在芯片在向体积更小,功能更强,功耗更低发展,减小芯片体积,就是很大的优势。同时,减少芯片接口,也意味着使用此芯片的相关的外围电路会更简化,避免了繁琐的硬件连线。
2. 提高系统的可扩展性,因为没有像其他设备一样用物理大小对应的完全数目的addr引脚,在芯片内部换了芯片的大小等的改动,对于用全部的地址addr的引脚,那么就会引起这些引脚数目的增加,比如容量扩大一倍,地址空间/寻址空间扩大一倍,所以,地址线数目/addr引脚数目,就要多加一个,而对于统一用8个I/O的引脚的Nand Flash,由于对外提供的都是统一的8个引脚,内部的芯片大小的变化或者其他的变化,对于外部使用者(比如编写nand flash驱动的人)来说,不需要关心,只是保证新的芯片,还是遵循同样的接口,同样的时序,同样的命令,就可以了。这样就提高了系统的扩展性。
片选无关(CE don’t-care)技术
Nand flash支持一个叫做CE don’t-care的技术,字面意思就是,不关心是否片选,那有人会问了,
如果不片选,那还能对其操作吗?答案就是,这个技术,主要用在当时是不需要选中芯片却还可以继续操作的这些情况:在某些应用,比如录音,音频播放等应用中,外部使用的微秒(us)级的时钟周期,此处假设是比较少的2us,在进行读取一页或者对页编程时,是对Nand Flash操作,这样的串行(Serial Access)访问的周期都是20/30/50ns,都是纳秒(ns)级的,此处假设是50ns,当你已经发了对应的读或写的命令之后,接下来只是需要Nand Flash内部去自己操作,将数据读取除了或写入进去到内部的数据寄存器中而已,此处,如果可以把片选取消,CE#是低电平有效,取消片选就是拉高电平,这样会在下一个外部命令发送过来之前,即微秒量级的时间里面,即2us-50ns≈2us,这段时间的取消片选,可以降低很少的系统功耗,但是多次的操作,就可以在很大程度上降低整体的功耗了。
总结起来简单解释就是:由于某些外部应用的频率比较低,而Nand Flash内部操作速度比较快,所以具体读写操作的大部分时间里面,都是在等待外部命令的输入,同时却选中芯片,产生了多余的功耗,此“不关心片选”技术,就是在Nand Flash的内部的相对快速的操作(读或写)完成之后,就取消片选,以节省系统功耗。待下次外部命令/数据/地址输入来的时候,再选中芯片,即可正常继续操作了。这样,整体上,就可以大大降低系统功耗了。
NAND FLASH 的读操作详细解读
以最简单的read操作为例,解释如何理解时序图,以及将时序图中的要求,转化为代码。解释时序图之前,让我们先要搞清楚,我们要做的事情:那就是,要从nand flash的某个页里面,读取我们要的数据。要实现此功能,会涉及到几部分的知识,至少很容易想到的就是:需要用到哪些命令,怎么发这些命令,怎么计算所需要的地址,怎么读取我们要的数据等等。
就好比你去图书馆借书,想想是一个什么样的流程,首先得告诉馆长你要要借书还是还书、然后把要借书的位置告诉馆长,最后是把图书卡或者借书证件给馆长,此时就耐心等待要借的书籍了。
下面,就一步步的解释,需要做什么,以及如何去做:
1.需要使用何种命令
首先,是要了解,对于读取数据,要用什么命令。
下面是datasheet中的命令集合:
很容易看出,我们要读取数据,要用到Read命令,该命令需要2个周期,第一个周期发0x00,第二个周期发0x30。
2.发送命令前的准备工作以及时序图各个信号的具体含义
知道了用何命令后,再去了解如何发送这些命令。
Nand Flash数据读取操作的时序图
注:此图来自镁光的型号MT29F1G08ABAEAH4:E的nand flash的数据手册(datasheet)。
我们来一起看看,我在图中的特意标注的①边上的红色竖线。
红色竖线所处的时刻,是在发送读操作的第一个周期的命令0x00之前的那一刻。让我们看看,在那一刻,其所穿过好几行都对应什么值,以及进一步理解,为何要那个值。
(1)红色竖线穿过的第一行,是CLE。还记得前面介绍命令所存使能(CLE)那个引脚吧?CLE,将CLE置1,就说明你将要通过I/O复用端口发送进入Nand Flash的,是命令,而不是地址或者其他类型的数据。只有这样将CLE置1,使其有效,才能去通知了内部硬件逻辑,你接下来将收到的是命令,内部硬件逻辑,才会将受到的命令,放到命令寄存器中,才能实现后面正确的操作,否则,不去将CLE置1使其有效,硬件会无所适从,不知道你传入的到底是数据还是命令了。
(2)而第二行,是CE#,那一刻的值是0。这个道理很简单,你既然要向Nand Flash发命令,那么先要选中它,所以,要保证CE#为低电平,使其有效,也就是片选有效。
(3)第三行是WE#,意思是写使能。因为接下来是往nand Flash里面写命令,所以,要使得WE#有效,所以设为低电平。
(4)第四行,是ALE是低电平,而ALE是高电平有效,此时意思就是使其无效。而对应地,前面介绍的,使CLE有效,因为将要数据的是命令,而不是地址。如果在其他某些场合,比如接下来的要输入地址的时候,就要使其有效,而使CLE无效了。
(5)第五行,RE#,此时是高电平,无效。可以看到,知道后面低6阶段,才变成低电平,才有效,因为那时候,要发生读取命令,去读取数据。
(6)第六行,就是我们重点要介绍的,复用的输入输出I/O端口了,此刻,还没有输入数据,接下来,在不同的阶段,会输入或输出不同的数据/地址。
(7)第七行,R/B#,高电平,表示R(Ready)/就绪,因为到了后面的第5阶段,硬件内部,在第四阶段,接受了外界的读取命令后,把该页的数据一点点送到页寄存器中,这段时间,属于系统在忙着干活,属于忙的阶段,所以,R/B#才变成低,表示Busy忙的状态的。
介绍了时刻①的各个信号的值,以及为何是这个值之后,相信,后面的各个时刻,对应的不同信号的各个值,大家就会自己慢慢分析了,也就容易理解具体的操作顺序和原理了。
3.如何计算出,我们要传入的地址
在介绍具体读取数据的详细流程之前,还要做一件事,那就是,先要搞懂我们要访问的地址,以及这些地址,如何分解后,一点点传入进去,使得硬件能识别才行。
此处还是以MT29F1G08ABAEAH4:E为例,此nand flash,一共有1024个块,每个块内有64页,每个页是2K+64 Bytes,假设,我们要访问其中的第1000个块中的第25页中的1208字节处的地址,此时,我们就要先把具体的地址算出来:
物理地址=块大小×块号+页大小×页号+页内地址=1000×128K+2K×25+1208=0x7D0CCB8,接下来,我们就看看,怎么才能把这个实际的物理地址,转化为nand Flash所要求的格式。
在解释地址组成之前,先要来看看其datasheet中关于地址周期的介绍:
图 Nand Flash的地址周期组成
结合时序图的2,3阶段,我们可以看出,此nand flash地址周期共有4个,2个列(Column)周期,2个行(Row)周期。
而对于对应的,我们可以看出,实际上,列地址CA0~CA10,就是页内地址,11位地址范围是从0到2047,即2K,而多出的A11,理论上可以表示2048~4095,但是实际上,上述规格书中说明当CA11为1时,CA【10:6】都必须为0,所以我们最多也只用到了2048~2112,用于表示页内的oob区域,其大小是64字节。
PA0~PA5,称作页号,页的号码,可以定位到具体是哪一个页。由6个位控制,最多寻址64页,符合规格书中的一块有64页。
而其中,BA6~BA15,表示对应的块号,即属于哪个块,有10个位控制,寻址范围为1024个块。
// 可见:地址的传输顺序是是 页内地址,页号,块号。从小到大。
简单解释完了地址组成,那么就很容易分析上面例子中的地址了:
0x7D0CCB8 = 0111 1101 0000 1100 0000 1100 1011 1000,分别分配到4个地址周期就是:
1st 周期,CA7~CA0 :1011 1000 = 0x B8
2nd周期,CA11~CA8 :0000 1100 = 0x 0C
3rd周期,BA7~PA0 :0000 1100 = 0x 0C
4th周期,A27~A20 :0111 1101 = 0x 7D
注意,上图图中对应的,*L,意思是低电平,由于未用到那些位,datasheet中强制要求设为0,所以,才有上面的2nd周期中的高4位是0000.。因此,接下来要介绍的,我们要访问第1000个块中的第25页中的1208字节处的话,所要传入的地址就是分4个周期,分别传入2个列地址的:0xB8,0x0C,然后再传2个行地址的:0x0C,0x7D,这样硬件才能识别。
4.读操作过程的解释
准备工作终于完了,下面就可以开始解释说明,对于读操作的,上面图中标出来的,1-6个阶段,具体是什么含义。
(1) 操作准备阶段:此处是读(Read)操作,所以,先发一个图5中读命令的第一个阶段的0x00,表示,让硬件先准备一下,接下来的操作是读。
(2) 发送两个周期的列地址。也就是页内地址,表示,我要从一个页的什么位置开始读取数据。
(3) 接下来再传入三个行地址。对应的也就是页号。
(4) 然后再发一个读操作的第二个周期的命令0x30。接下来,就是硬件内部自己的事情了。
(5)Nand Flash内部硬件逻辑,负责去按照你的要求,根据传入的地址,找到哪个块中的哪个页,然后把整个这一页的数据,都一点点搬运到页缓存中去。而在此期间,你所能做的事,也就只需要去读取状态寄存器,看看对应的位的值,也就是R/B#那一位,是1还是0,0的话,就表示,系统是busy,仍在”忙“(着读取数据),如果是1,就说系统活干完了,忙清了,已经把整个页的数据都搬运到页缓存里去了,你可以接下来读取你要的数据了。
对于这里。估计有人会问了,这一个页一共2048+64字节,如果我传入的页内地址,就像上面给的1028一类的值,只是想读取1028到2011这部分数据,而不是页开始的0地址整个页的数据,那么内部硬件却读取整个页的数据出来,岂不是很浪费吗?答案是,的确很浪费,效率看起来不高,但是实际就是这么做的,而且本身读取整个页的数据,相对时间并不长,而且读出来之后,内部数据指针会定位到你刚才所制定的1208的那个位置。
(6) 接下来,就是“窃取“系统忙了半天之后的劳动成果的时候了,呵呵。通过先去Nand Flash的控制器中的数据寄存器中写入你要读取多少个字节(byte)/字(word),然后就可以去Nand Flash的控制器的FIFO中,一点点读取你要的数据了。
至此,整个Nand Flash的读操作就完成了。
对于其他操作,可以根据上面的分析,一点点自己去看datasheet,根据里面的时序图去分析具体的操作过程,然后对照代码,会更加清楚具体是如何实现的。
NAND FLASH 搭配NOR FLASH的优缺点
常见的应用组合就是,用小容量的Nor Flash存储启动代码,比如uboot,系统启动后,初始化对应的硬件,包括SDRAM等,然后将Nand Flash上的Linux 内核读取到内存中,做好该做的事情后,就跳转到SDRAM中去执行内核了。
这样的好处是由于NAND 本身有坏块的可能性,所以为了保障启动万无一失,很多要求高级安全的产品,标注必须从NOR Flash启动uboot,而且从NOR启动还有一个好处就是启动速度快,NAND Flash的优点是容量大,但是读取速度不快,比不上NOR Flash,比如一些对于开机速度有要求的产品应用,比如车载液晶仪表,这类产品为了快速启动一般都是NOR FLASH+EMMC的配置,当然像赛普拉斯平台直接上hyperflash那就更快了。
NAND Flash的ECC校验简单说明
我们先来说说为什么需要ECC校验这个事情,其实上一篇文章我们说过由于NAND flash的自身的不稳定性,存在位翻转的现象,所以就存在写入到flash中的数据和读出来的数据不一样的情况发生,此时就需要有一个检验的机制,防止读出来的不正确,还可以纠正过来。
其实这个就类似于去银行存钱,你存了1W,过几天去银行去取钱的时候发现只有9000了,这个时候你就会拿出存条找银行理论,上次明明存的就是1W啊,你少的1000必须跟我纠正过来,其实这个就是NAND flash的ECC检验原理,发现有读出来的数据和存进去的数据不正确,此时就需要去纠正回来,当然这里的纠正的数据是有限制的,不是所有数据出错都能纠正过来。
ECC 校验是在奇偶校验的基础上发展而来的,它将数据块看作一个矩阵,利用矩阵的行、列奇偶信息生成 ECC 校验码。它能够检测并纠正单比特错误和检测双比特错误,但对双比特以上的错误不能保证检测。它克服了传统奇偶校验只能检出奇数位出错、校验码冗长、不能纠错的局限性。每 nbit 的 Ecc 数值可满足 2的n次方bit 数据包的校验要求。
当往Nand Flash 的Page 中写入数据的时候,每256字节我们生成一个ECC 校验和,称之为原ECC校验和,保存到 PAGE 的OOB数据区中。当从Nand Flash 中读取数据的时候,每 256 字节我们生成一个ECC校验和,称之为新 ECC 校验和。
校验的时候,根据上述ECC生成原理不难推断:将从 OOB 区中读出的原 ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误):若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错:其他情况均表示出现了无法纠正的错误。
这两期我们基本上把NAND FLASH的相关设计和使用都完整讲了一遍,下期会讲讲车载DRAM和EMMC的相关内容,敬请期待。
相关问答
谁帮忙回答:乐山 时序 器价格表, 时序 器什么品牌好??[回答]你可以去看下PROBASSCO电源时序应该可以满足您的需求如果给了不对齐的,也是有可能对有可能错。SoC的Nand控制器的作用Nand芯片本身通过Nand接口...
东芝如何布局5-Bit-per-Cell Flash SSD?东芝是第一家宣布并公开演示企业/数据中心PCIe4.0固态硬盘的公司。全新的CM6系列企业和CD6系列数据中心SSD采用公司最新的96层BiCS4闪存构建,时序吞吐量高达6...
imx6ull多少核?6ULL是一个高功效、高性价比应用处的理器系列,采用单个ArmCortex-A7内核,运行速度高达528MHz。i.MX6ULL应用处理器包括一个集成的电源管理模块,降低了...i...