我们熟知的NAND闪存,还有个“双胞胎兄弟”
【IT168 评论】无论消费者还是企业机构,大多数人在谈到闪存时,首先想到的就是NAND闪存。从一定的现实意义上来讲,NAND闪存可以说已经成为固态硬盘的代名词。基于块寻址结构和高密度,使其成为磁盘的完美替代品。
NOR闪存是另一种与NAND不同的闪存类型,它具有不同的设计拓扑结构,某些特定的应用场景下更为适合。在比较NAND和NOR闪存在不同应用中的相对优势和适用性之前,检查其结构差异是很重要的。
NAND闪存产品是当今已经达到高水准的存储芯片,是当前市面上嵌入式以及独立式SSD的主要原材料。多层单元(MLC)技术和3D制造工艺的结合,将NAND存储单元垂直蚀刻到硅衬底上,使存储密度和NAND芯片容量呈几何级增长。
NAND与NOR电路基础
尽管NAND闪存是这两种非易失性内存技术中相对流行的一种,但NAND和NOR都是由同一名东芝公司的工程师在上世纪80年代中期发明的。要理解这两个种类的区别和命名,需要简要回顾一下逻辑门的基础知识。
NAND和NOR分别涉及到布尔逻辑函数中的逻辑“和”(and)以及“或”(or)。如下所示,NAND和NOR都生成响应两个二进制输入的输出。
响应两个二进制输入的NAND和NOR输出
NAND和NOR逻辑门仅仅为它们各自的功能实现了上面这个真值表。
NAND门在概念上是作为AND门实现的——当两个输入都是1时输出1——后面跟着一个NOT门,这是一个逻辑反转。相应的,NOR门在概念上是一个OR门——有任何一个输入是1时输出1,然后是NOT门,这是一个逻辑倒装。
布尔逻辑的背景对于理解NAND和NOR闪存至关重要,因为闪存单元被连接到一个行和列的数组中。在NAND闪存中,一组中的所有单元(通常是一个字节的倍数,取决于芯片的大小)共享一条位线,并以串行方式连接每个单元,每个单元连接到一个单独的字行。同一字行连接一个内存块中的多个字节,通常为4 KB到16 KB。因此,只有当所有的字线都是高或单状态时,位线才会降低或变为零状态,这实际上将内存组转换为一个多输入NAND门。
与此相反,NOR闪存并行组织位线的方式是,当位线和字线都处于低或零状态时,内存单元只保持高或单状态。
NAND单元的串联结构使得它们可以通过导电层(或掺杂层)连接在衬底上,而不需要外部接触,从而显著减少了其横截面积。
NAND闪存单元的串联连接意味着它们不需要单元之间通过金属层进行外部接触——而这正是NOR拓扑结构所需的。使用导电层连接硅衬底上的单元意味着NAND闪存的密度通常比NOR高两个数量级,或100倍。此外,组内单元的串联连接使它们可以垂直地堆积在3D数组中,位线类似于垂直管道。
相反,由于NOR闪存单元不能单独寻址,因此它们对于随机访问应用程序更快。
NAND与NOR产品类型
这两种类型的闪存具有明显的特性和性能差异,它们有各自最适合的应用程序类型。除了容量外,NAND和NOR闪存还具有不同的运行、性能和成本特性,如下图所示。
这两种闪存中也有几种不同的产品类型,它们在I/O接口、写入持久性、可靠性和嵌入式控制功能方面有所不同。
NAND闪存产品类型
NAND闪存以单层(SLC)、多层(MLC)、三层(TLC)或四层(QLC)的形式在每个单元(cell)中存储bit,分别为1 bit/cell、2 bit/cell、3 bit/cell、4 bit/cell。要确定哪种类型的NAND最适合于工作负载,简单来说,每个单元的位数越高,其容量就越大——当然,是以数据持久性和稳定性为代价的。
NAND设备只是没有任何外围电路的存储芯片,这些外围电路使NAND闪存可以在SSD、U盘或其他存储设备中使用。相比之下,托管型NAND产品嵌入了一个内存控制器来处理必要的功能,比如磨损调平、坏块管理(从使用中消除非功能性内存块)和数据冗余。
NOR闪存产品类型
串行设备通过只暴露少量(通常是1到8个)I/O信号来减少包的pin数。对于需要快速连续读取的应用程序来说,这是理想的选择。NOR闪存通常用于瘦客户机、机顶盒、打印机和驱动器控制器。
并行NOR产品暴露多个字节,而且通常使用内存页而不是单独的字节进行操作,更适用于启动代码和高容量应用程序,包括数码单反相机、存储卡和电话。
两种闪存都是不可或缺的
NAND是闪存的主力,广泛用于嵌入式系统和SSD等存储设备的大容量数据存储。不过,NOR 闪存在存储可执行的启动代码和需要频繁随机读取小数据集的应用程序方面起着关键作用。显然,这两种类型的闪存将继续在计算机、网络和存储系统的设计中发挥作用。
原文作者:Kurt Marko
后NAND时代,这将成为未来存储的选择
来源:内容由半导体行业观察(ID:icbank)编译自IMEC,谢谢。
当今的内存格局包括不同类型的内存,每一种内存都在存储数据并将它们来回馈送到电子系统的计算部分中发挥作用。在传统的计算机层次结构中,快速且更昂贵的有源存储器(静态随机存取存储器 (SRAM) 和动态 RAM (DRAM))与更高延迟和更低成本的存储解决方案不同。存储大量数据主要通过 NAND 闪存、硬盘驱动器 (HDD) 和磁带技术完成。虽然磁带存储仍然仅限于长期存档,但 HDD 和 NAND-Flash 用于在线和近线存储应用:它们都需要比磁带更频繁地访问,访问时间从微秒到几秒不等。NAND-Flash 在这两种存储类型中提供最低的延迟和功耗。这种非易失性存储器存在于所有主要的电子终端市场,例如智能手机、服务器、个人电脑、平板电脑和 USB 驱动器。进入后NAND时代
在 NAND-Flash 扩展饱和后,我们预计不同的存储技术会共存,每种技术都会权衡大小、能耗、延迟和成本。正在研究存储的新概念,不是为了取代现有的存储解决方案,而是在延迟/生产力空间中补充它们。 想想 DNA 存储,针对低成本、超高密度但速度较慢的归档应用(例如保存(监视)视频、医疗和科学数据)或铁电存储技术,预计将在低延迟中找到自己的位置存储细分市场。所有这些存储器都将组织在不同的层级中,并将共同满足 >100 zettabyte 数据时代的存储需求。在本文中,我们提出了两种新的基于液体的存储概念——胶体(colloidal)和电石存储器(electrolithic memory)——具有超高密度近线存储应用的潜力。例如,这些存储解决方案可以在几秒钟内使归档的“非活动”数据(例如电子邮件归档、图像和声音文件或其他大型文档)可供用户访问。从 2030 年开始,它们可能会在 HDD 和磁带之间找到自己的位置,每卷的位数要高得多,但比 3D-NAND-Flash 慢。增加位密度需要新的方法来寻址存储单元
我们认为,以具有成本效益的方式进一步扩展传统固态存储器(如 SRAM、DRAM 或 3D-NAND-Flash)的位密度具有挑战性是有一个根本原因。在所有这些存储器中,存储单元被组织成二维或三维阵列,位于字线和位线的交叉点。每个单元至少由一个存储元件和一个访问设备组成。存取设备——通常是晶体管或二极管——将存储元件连接到至少两条线,用于选择、读取和写入存储单元。缩放挑战与存储元件本身无关(单个分子大小的存储元件已被证明),而是与访问设备及其布线有关。 单元的尺寸至少为 2Fx2F (4F 2 ),其中 F 是最小特征尺寸(例如,字线半间距),由用于图案化导线的(昂贵的)光刻步骤确定。这种每个存储元件都有一个访问设备的配置使得开发具有成本效益的高密度解决方案并在每个单元中存储多于几位(目前最多 4 位 NAND-Flash 单元)具有挑战性。HDD 和磁带存储技术采用了不同的策略。在这里,显著较少数量的读/写访问设备连接到用作存储介质的较大未图案化区域。与 NAND 闪存相比,这导致更高的密度和更低的每比特成本。但也适用于更慢、更笨重和耗能的解决方案——因为读取头必须以机械方式定位在大面积上。颠覆性解决方案将密集的访问设备阵列耦合到容量存储介质
通过调和两全其美,可以找到新的方法来制造超高密度存储设备,其每比特成本可承受,运行速度比磁带快。启用超高密度存储设备的一种有吸引力的方法是制作连接到存储介质的密集访问设备阵列。受生命科学进步的启发,这种存储介质可以是一种包含离子、分子或(纳米)粒子的液体,可以对其进行操作并以更大的体积移动到作为密集阵列一部分的访问设备。这种方法将实现多位操作,每个位所需的访问设备、电线和光刻步骤显著减少。这种新方法的高密度潜力引起了工业界的兴趣,世界范围内正在研究几种基于液体的概念。Colloidal memory:操纵纳米粒子
imec 引入的第一个基于液体的记忆概念被称为胶体记忆(Colloidal memory)。
胶体记忆概念很好地展示了液体(例如,水)如何用作体积存储介质和溶解的纳米颗粒(胶体)作为数据符号的载体。这个想法是使用(至少)两种类型的纳米颗粒(A 和 B)的胶体,这些纳米颗粒包含在储层中。该储存器连接到capillaries阵列,纳米颗粒可以插入其中。如纳米颗粒仅比capillaries的直径稍小,则可以保留颗粒(位)进入毛细管的顺序。正是在这个比特序列中,信息才能被编码。纳米颗粒可以通过位于每个capillaries入口处的电极选择性地诱导(和感测)。CMOS 外围电路控制电极阵列。电石存储器:利用电化学
与胶体存储器一样,电石存储器也使用流体储存器和capillaries阵列。但在这种情况下,金属离子溶解在液体中,读写操作是通过更传统的电沉积和溶解技术来实现的。更详细地,储液器包含其中溶解有(至少)两种金属离子(A和B)的流体。该储层连接到一系列capillaries (或孔)。工作电极(由惰性金属如钌 (Ru) 制成)位于每个毛细管的底部。储存器也与单个反电极接触。储液器、工作电极和公共反电极一起为每个capillaries 形成一个电化学电池。密集的工作电极阵列连接到 CMOS 集成电路,用于单独寻址每个电极。通过在capillaries 内的工作电极上施加一定的电位,金属 A 的薄层可以沉积在电极上。金属 B 的行为相似,但沉积的起始电位不同——由其化学性质决定。信息现在可以被编码在交替层的堆栈中,暗示着地层石(lithos)——因此是新记忆的名称。迈向工业应用:提高密度、响应时间、带宽、耐用性和保留率
这些基于液体的新型存储器仍处于探索性研究阶段,其中电石存储器是最先进的。然而,工业界已经对这些概念表现出相当大的兴趣。在 imec,我们设想从 2030 年开始在内存路线图中引入液态内存,届时 3D-NAND-Flash 的位密度缩放将开始饱和。随着进一步扩展的努力,我们预计通过这些方法,位存储密度可以推向 1Tbit/mm 2范围,与 3D-NAND-Flash 相比,每 mm 2的工艺成本更低。对于液态存储器而言,只有电极和capillaries的间距为 40nm,才能实现如此高的密度。此外,研究人员必须能够分别制造用于胶体和电石存储器的纵横比约为 400:1 和 165:1 的capillaries。这类似于制造未来 3D-NAND-Flash 产品所需的内存孔的纵横比,因此被认为是一个现实的目标。要成为近线应用的可行存储解决方案,该技术还必须具有足够的响应时间、带宽(例如 20Gb/s)、循环耐久性(10 3写入/读取周期)、能耗(几 pJ 写入位)、和保留(超过 10 年)。这些评估将成为进一步研究的主题,建立在 imec 的 300 毫米液体记忆测试平台上,该平台具有不同配置的colloidal和electrolithic cells。★ 点击文末【阅读原文】,可查看本文原文链接!
*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。
今天是《半导体行业观察》为您分享的第3043内容,欢迎关注。
★芯片“暴利”江湖
★汽车芯片,缺到什么时候?
★越来越热的CXL
晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装
相关问答
什么是 NAND 芯片?NAND芯片是一种闪存芯片,广泛应用于各种数字设备,如闪存卡、USB闪存驱动器、固态硬盘等。它是一种非易失性存储器,可以长期存储数据,而不需要任何电源支持。...
norflash和nandflash的区别?NANDflash和NORflash的区别一、NANDflash和NORflash的性能比较flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的....
苹果电脑13寸右前方有个想sb卡的小口是干什么用的-ZOL问答SDXC规范仍然基于NAND闪存技术,这主要是由于NAND闪存拥有增大页容量的功能(NAND闪存的读取写入的容量单位都是“页”),因为NAND闪存的工作原理是闪存页的容量越...
酷比魔方I player什么芯片?经过联系厂家,我们得知该芯片具有一下主要特点。ARM922TDMI微处理器内核(8KB数据缓存,8KB指令缓存);多种引导模式:NAND-Flash,UART及片外存储器CS0...AR....
dram和ssd区别?区别如下:一、性质不同1、固态硬盘:用固态电子存储芯片阵列而制成的硬盘。2、内存条:CPU可通过总线寻址,并进行读写操作的电脑部件。二、性能不同1、固...
闪存卡构造是什么?- 一起装修网一起装修网问答平台为您提供闪存卡构造是什么?的相关答案,并为您推荐了关于闪存卡构造是什么?的相关问题,一起装修网问答平台:装修问题,因我而止。
固态硬盘的结构和工作原理是什么-ZOL问答主控芯片和缓存芯片以外,剩下的大片区域就是NANDFLASH芯片了,目前NANDFLASH主要提供商是三星和intel两家,大部分SSD产品采用了三星的NANDFLASH,intel自己的X.....
flash烧录和ic烧录?,IC烧录原理如何选??[回答]一、定义上的区别1、Nand-flash存储器是flash存储器的一种,其内部采用非线性宏单元模式,为固态大容量内存的实现提供了廉价有效的解决方案。2、NORF...
固态硬盘好贵的原因是什么 - 小红薯F381A998 的回答 - 懂得两台电脑在同样配置的电脑下,搭载固态硬盘的笔记本从开机到出现桌面一共只用了18秒,而搭载传统硬盘的笔记本总共用了31秒,两者几乎有将近...3.相...
“ssd”和“普通硬盘”的差别是什么?-ZOL问答厂商只需购买NAND存储器,再配合适当的控制芯片,就可以制造固态硬盘了。新一代...由于寻址时间与数据存储位置无关,因此磁盘碎片不会影响读取时间。(4)基于DRAM...