行情
HOME
行情
正文内容
nand 闪存供电 2nm之后,铜互联何去何从?
发布时间 : 2024-10-18
作者 : 小编
访问数量 : 23
扫码分享至微信

2nm之后,铜互联何去何从?

来源:内容由半导体行业观察(ID:icbank)编译自SE,谢谢。

晶体管微缩在 3nm 达到临界点,纳米片 FET 可能会取代 finFET 以满足性能、功率、面积和成本 (PPAC) 目标。与此同时,人们正在评估2nm后铜互联可能面对的一项重大架构变化,这一举措将重新配置向晶体管供电的方式。这种方法依赖于所谓的埋入式电源轨 (BPR) 和背面配电,让正面互连来传输信号。英特尔宣布将在其 20Å 代(相当于 2nm)使用其 PowerVia 结构,其他芯片制造商正在评估类似方案。芯片制造商也可能会在 2nm 节点后尽快用钌或钼替代一定程度的铜。其他更温和的变化将使用低电阻通孔工艺、替代衬垫和完全对齐的通孔方法来扩展铜镶嵌互连。大部分优化发生在链中的薄弱环节——接触(金属 0)、金属 1 和通孔,其中 RC 延迟最有可能减慢芯片速度。Veeco首席技术官 Ajit Paranjpe 表示:“对于通孔填充,势垒、种子和通孔金属的保形沉积可能会被钴(甚至钌)的无势垒沉积和自下而上填充所取代。”互连挑战始于光刻技术,在整个 5nm 工艺中都采用了 EUV,这大大增加了成本。

EUV 和 BEOL 图案化

在 7nm 节点 只有少数掩模层需要EUV光刻,但在 5nm(约 30nm 金属间距)时,这会变为 15 到 18 层。在光刻中,由于不精确对齐的特征,边缘放置错误(edge-placement errors :EPE) 越来越受到关注。ASML研究员Robert Socha强调需要在 5nm 节点控制和减少 EPE 的影响。一个关键因素是覆盖(overlay)误差,5nm 节点的覆盖预算仅为 2.5nm(5 个硅原子宽)。KLA过程控制解决方案总监 Andrew Cross 表示:“我们已经看到 EPE 预算中的叠加元素随着场内变化的增加而缩减得最快。” “这导致更高的光学覆盖采样、改进的覆盖测量技术,以及在抗蚀剂显影和蚀刻后使用基于 SEM 的覆盖测量,这需要光学和电子束工具之间的协同作用。”

通孔优化

扩展铜技术的一个关键策略是消除铜通孔底部的阻挡金属 TaN。实现这一点的一种方法是通过选择性地沉积自组装单层 (self-assembled monolayer:SAM) 薄膜,通过原子层沉积来沉积 TaN(ALD) 沿侧壁,最后去除 SAM 并填充铜。在 IITC,TEL 使用双镶嵌集成描述了这样一个过程,并比较了两个自组装单层(A 和 B)。在 TaN 阻挡层 ALD 之后,SAM 被蒸发,然后在通孔中进行铜化学沉积 (ELD)(见图 1)。在通孔预填充之后,通过 CVD 在沟槽侧壁上沉积钌衬垫,然后进行铜离子化 PVD 填充。使用 SAM B,结果显示通孔底部没有 Ta (EDX)。任何 SAM 的一个关键方面是它可以承受大约 350°C 的 ALD 工艺温度。芯片制造商越来越多地将 SAM 工艺视为降低整体电阻和将铜镶嵌工艺扩展到 2nm 节点的关键,无论是通过 CVD 还是旋涂。另一种减少通孔底部阻挡金属 (TaN) 体积的策略涉及从 PVD TaN 到 ALD TaN 的过渡,这将导致薄膜更薄、更连续。预计 ALD TaN 将在 5nm 节点上广泛实施,可能采用 SAM 工艺。

图 1:在这种自组装单层 (SAM) 工艺中,在阻挡层和铜seed的 ALD 期间,薄膜会掩盖通孔底部。然后通过在 325°C 下蒸发去除 SAM,然后填充铜。

完全对齐通孔 (FAV) 背后的理念

完全对齐通孔 (FAV) 背后的理念是减少通孔和线路之间的边缘放置错误的影响,这会导致器件故障和长期可靠性问题。自 32nm 节点以来,芯片制造商一直在采用自对准方法,使用 TiN 硬掩模将互连对齐到下面的水平。在完全对齐的过孔中,下面和上面的过孔被注册。有两种方法可以实现 FAV,通过从下面的线路蚀刻一些铜,然后图案化并沉积通孔,或者通过在低 k 电介质上选择性地沉积介电膜,然后进行通孔图案化。IBM和Lam Research的工程师提出了一种完全一致的方法,在简化的整体工艺中使用选择性电介质沉积 。据该小组称,FAV 集成可以降低 70% 的电阻和增加 30% 的通孔接触面积,同时保持通孔到线的可靠性(见图 2)。使用铜和低 k 电介质 (SiCOH) 的 32nm 间距测试结构,该团队使用湿化学方法使铜、衬垫和屏障凹陷。“[凹槽蚀刻],当与蚀刻选择性电介质cap结合使用时,可作为通孔引导图案,减少覆盖和临界尺寸 (CD) 引起的边缘放置错误,”IBM 表示。选择性的氧化铝膜通过 CVD 沉积在 low-k 上并用作部分蚀刻停止。该工艺成功的关键是高选择性和有限的介电膜横向过度生长,并且与标准 FAV 工艺相比没有电阻降低或变化。IBM 表示,另一个优势是金属线的纵横比较低(因为凹槽很浅),这有助于填充铜。目前,尚不清楚完全对齐的方法会有多流行。“问题在于以什么形式——在什么水平和什么间距上需要(完全对齐的通孔)?” Imec 研究员 Zsolt Tokei 问道。他指出,虽然凹槽蚀刻和选择性沉积方法各有利弊,但关键问题是缺陷和提高新工艺的良率。即便如此,随着 3nm 和 2nm 节点的 EPE 容差越来越小,像 FAV 这样的方法可能会变得更加引人注目。图 2:使用选择性沉积工艺为 5nm 节点制造两级完全对齐的通孔。选择性沉积,也称为区域选择性沉积 (ASD),已经存在了几十年,但直到最近几年,它才迈出了从实验室到晶圆厂的一步。对于 ASD,“杀手级应用”被证明是在铜线上沉积钴帽(cap),与传统的氮化硅帽相比,它能够更好地控制电迁移。一些公司在 10nm 节点采用了该技术。连同铜下方的钴衬垫(衬垫也称为成核层或胶水层,因为它们能够实现金属粘附),钴在此方案中包裹铜。当目标是在金属上沉积金属或在电介质上沉积电介质时,选择性 ALD 工艺表现最佳。根据设备供应商的不同,可以使用不同的化学机制来保持沉积的选择性并防止在不需要的地方沉积。对于接触金属化,选择性钨沉积可能会通过改进填充和完全消除 TiN 势垒来显着降低电阻率(见图 3)。通过消除侧壁阻挡层和衬里,选择性钨还允许清洁的金属对金属界面,以降低整体电阻。据应用材料公司称,电阻降低 40% 是可能的。图 3:选择性钨自下而上填充提供了消除阻挡层和衬垫层、改善接触和电阻的途径。

钴和钨

在 14nm 或 10nm 技术节点之前,钨一直是与金属/多晶硅栅极以及晶体管上的源极和漏极硅化物区域进行电接触的主要材料。近年来,钴触点采用了薄的 TiN 势垒。同样在线路或通孔中,更薄的势垒以及更短的钴平均自由程(10nm 对铜的 39nm)导致小线的电阻率更低(电子路径更长,散射会增加净电阻)。英特尔是第一家在接触级生产中使用钴的公司,事实上,钴的集成问题可能是英特尔 10nm 延迟问题的部分原因。尽管如此,几家芯片制造商还是开始在触点的生产过程中使用钴,同时也将钴用作铜互连的衬垫和封盖材料。衬垫金属严重影响缩放互连线中铜的填充质量。在 IITC 的受邀演讲中,IBM 通过 CVD 展示了使用新的衬里钴掺杂钌,相对于 36nm 金属结构中的 CVD 钴和 CVD 钌衬里,提高了电迁移性能。IBM 确定新的衬里具有更好的 EM 电阻,因为钌衬里中的钴抑制了由铜上的钴帽引起的沿晶界的扩散。低温(250°C)回流的 PVD 铜正成为密集互连的主流,而化学铜或 ECD 在全球范围内使用。

下一个金属:Ru还是Mo?

看来,在 1nm 节点(20nm 金属间距),从铜到另一种金属——钌或钼——的变化将变得必要,至少在某些层面上是这样。有趣的是,正在探索钼和钌作为 3D NAND 闪存晶体管中钨的字线替代品。对于行业替代铜的选择,缩放特征的电阻是最重要的指标。同样重要的是 EM 电阻,它与长期可靠性有关。钌、钼和钴的大部分优势在于可以消除衬里,从而提供更多的沟槽或通孔体积以供主要金属占据。可以使用回流或激光退火来最大化晶粒尺寸。“对于金属线,钌是一种可能的替代品。虽然钌的体电阻率为 7 µohm-cm,但采用传统溅射法沉积的 20nm 钌膜的有效电阻率大于 11 µohm-cm,”Veeco 的 Paranjpe 说道。“因此,正在探索替代方法,例如离子束沉积,它可以更好地控制晶体结构和晶粒尺寸。”钌因其低电阻率、高熔点、耐酸腐蚀和极低的腐蚀潜力而作为下一代互连具有吸引力。相比之下,钼前体比钌便宜一个数量级。在 2nm 节点之前,两者都不太可能需要。“钼肯定更便宜,所以如果你是工厂经理,你会更开心,”Imec 的 Tokei 说。“但如果你是一名工程师,你需要拥有所有可用数据来在材料之间做出决定,而我们还没有完整的数据集。”图 4:通过在晶体管的隔离区域通过硅晶片构建一个导轨,晶体管功率传输(背面)与信号传输(正面)分离。

埋入式电源轨

BPR 和背面配电 (BPD) 的组合实质上采用了电源线和地线,这些线之前通过整个多层金属互连进行布线,并在晶圆背面为它们提供了一个专用网络(见图 4)。这减少了电压 (IR) 降。“在传统互连中,您必须针对电源和信号优化金属 0 和金属 1,因此电源驱动高互连,而信号驱动细互连。你最终会做出权衡,这对任何一方来说都不是最优的,”Tokei 解释道。“通过将电源布线到背面,那里会有高大、相对较宽的互连,而前面的信号和时钟则有相对细长的电阻线,并且您显着提高了布线能力。” 他指出,正在对这些新结构的热管理进行仔细评估。BPR 和 BPD 存在许多挑战,包括如何构建埋地电源轨,如何将配电网络连接到电源轨,以及如何将电源从电源轨传输到晶体管。这些决定将决定集成方案以及最终的功率和扩展增益。应用材料公司先进产品技术开发董事总经理 Mehul Naik 表示,制造挑战将因方案而异,包括高纵横比金属填充、金属和电介质选择,以及通过背面研磨和 CMP 减薄晶圆。英特尔宣布将在其 20Å 代 (2nm) 上使用其 PowerVia,其目标是在 2024 年实现大批量生产。半导体工程与英特尔的高级副总裁兼技术开发总经理 Ann Kelleher 讨论了 PowerVia,并询问如何它不同于正在开发的其他方法。“在最高级别,埋藏的电力轨道是相同的总体主题,”Kelleher 说。“但是,它的实现方式有所不同。我们将功率从晶圆背面传送到晶体管。Buried Power Rail 基本上是从前端获取它,所以你有不同的架构来实现它。这是关键的区别。”值得注意的是,英特尔的 PowerVia 似乎在触点处连接,而 Imec 的电源轨嵌入在 STI(浅沟槽隔离)中。Lam Research的计算产品副总裁 David Fried将埋地电力轨方法比作房屋的地下室。“如果你用地下室的比喻,每边都需要一个楼梯间,”他说。“您现在可以从两侧访问一楼的物品,而不仅仅是一个。当您可以从下方或上方访问晶体管时,这可以打开一个全新的设计维度。这是一个巨大的变化。”虽然这种转变为在晶圆正面和背面构建晶体管需要许多工艺和设计创新,但背面电源仍将采用平面逐级构建这一事实建立在现有的行业知识之上。“这是我相当看好的技术之一,”Fried说。“创新是困难的和多方面的,但它们的核心是经过验证的。因此,埋入式电源轨只是三维流上的另一个二维层次。它仍然是平面处理,因此它与我们已经做的一切相似。将其组合在一起并使其发挥作用确实非常困难,但其核心并不像其他一些选择那样具有革命性。”将需要金属化、电介质和 CMP 方面的工艺创新。“当您使用电源轨并将其连接到设备时,您如何确保接口足够干净,以及如何减少传输中的功率损耗?预清洁和与无空隙低电阻率金属的集成将非常重要,”应用材料公司的 Naik 说。“将需要高质量、低热预算的电介质 (≤400°C),因为这些工艺发生在包括金属化在内的前端设备制造完成之后。”另一个关键是CMP。对于晶圆减薄,背面晶圆研磨后将进行 CMP 以减薄器件晶圆。“从良率的角度来看,CMP 的工作是确保所有传入的非均匀性得到管理,以在低缺陷率的情况下实现所需的全球晶圆厚度均匀性,”Naik 说。从晶圆减薄的角度来看,用于 HBM 内存的多芯片堆叠和现在用于逻辑的背面供电都将减薄至 10 微米,但人们对更薄的兴趣极大。“高密度堆叠正在推动这种需求,设计人员想要比现在更薄的硅片。从需要某些东西的那一刻起,技术人员就会扩展能力,这就是芯片堆叠正在发生的事情,”Tokei 说。

结论

芯片制造商正在评估 5nm 及以后的许多工艺变化,包括通孔电阻优化、完全对齐的通孔、钴帽和触点,以及分离电源和信号线以释放拥挤的互连层。半导体行业总是更愿意进行逐步的工艺修改,而不是尽可能地进行大的材料和结构变化。增强可靠性、消除通孔底部的屏障和完全对齐通孔的新型衬垫似乎是一种可行的解决方案。工程师们开始解决围绕电源轨和背面处理的挑战。选择性沉积已进入钴帽晶圆厂,并且可能会在未来的其他应用中获得认可。★ 点击文末【阅读原文】,可查看本篇原文链接!

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2983内容,欢迎关注。

★德国半导体的实力

★何为磷化铟,它有未来吗?

★芯片巨头的必争之地

晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装

原文链接!

Nand Flash主要厂商及其产品

根据2020年二季度Nand Flash市场排名,三星占据31%,处于领先地位,紧跟其后的是铠侠,占比达17%。排名第三、第四、第五、分别是西数、美光、SK海力士。以下是DRAMeXchange统计数据:

电子发烧友对目前市场主要的Nand Flash厂商及其产品进行梳理,以下是具体内容:

三星

1、三星SSD 980 PRO

三星电子推出首款消费类PCIe 4.0 NVMe SSD:三星SSD 980 PRO, 980 PRO采用三星1XX层 TLC NAND闪存,以及容量分别为512MB和1GB的DRAM缓存,通过内部设计,可充分发挥PCIe Gen4的潜力。数据显示,三星SSD 980 PRO顺序读取速度最高可达7000MB/s,顺序写入速度最高可达5000MB/s。

2、870 QVO SATA SSD

三星推出了其第二代QLC闪存驱动器870 QVO SATA SSD, 870 QVO分别提供同类最佳的顺序读取和写入速度,分别高达560 MB/s和530 MB/s,借助该驱动器的Intelligent TurboWrite技术,它可以使用大型可变SLC缓冲器保持最高性能

3、eUFS 3.1

三星电子宣布已经开始批量生产用于智能手机的512GB eUFS 3.1,其写入速度为512GB eUFS 3.0的三倍,打破了智能手机存储中1GB/s的阈值。

三星eUFS 3.1连续写入速度超过1,200MB/s,是基于SATA SSD (540MB/s)的两倍以上,是UHS-I microSD卡(90MB/s)的十倍以上。

KIOXIA

1、第六代企业SAS SSD

随着其第六代企业SAS SSD系列的推出, 专为现代IT基础设施设计的24G SAS将其上一代的数据吞吐率提高了一倍,同时搭载了新功能和增强功能,以达到新的应用性能水平。

PM6系列采用铠侠的96层BiCS FLASH 3D TLC闪存,可提供业界领先的高达4,300MB/s(4,101MiB/s)的SAS SSD顺序读取性能,比上一代提高了2倍以上。铠侠的新驱动器容量高达30.72TB,使其成为业界容量最高的2.5英寸SAS SSD。

2、BiCS FLASH

铠侠开发具有112层垂直堆叠结构的第五代BiCS FLASH™三维(3D)闪存。新产品具有512 Gb(64千兆字节)容量并采用TLC技术。

铠侠创新的112层堆叠工艺技术与先进的电路和制造工艺技术相结合,与96层堆叠工艺相比,将存储单元阵列密度提高约20%。因此,每片硅晶圆可以制造的存储容量更高,从而也降低了每位的成本(Bit-cost)。此外,它将接口速度提高50%,并提供更高的写性能和更短的读取延迟。

西部数据

1、SN550 NVMe SSD

Western Digital设计的控件和固件搭配最新的 3D NAND,可始终如一地提供优化的性能。

2、iNAND MC EU521

西部数据宣布率先基于UFS 3.1规范协议推出iNAND MC EU521嵌入式闪存产品,新增多项功能,并进一步提高速度、容量、降低功耗,再加上11.5x13x1.0mm小型封装尺寸。西部数据表示,iNAND MC EU521将在3月份上市,采用主流的96层3D NAND,并充分利用UFS 3.1高带宽以及SLC NAND缓存,可提供最高800MB/s的顺序写入速度。

美光

美光的下一代 M500 固态硬盘采用 Micron 20 nm MLC NAND 闪存、SATA 6 Gb/s 接口,具有行业标准 512 字节分区支持功能、热插拔功能以及功耗极低的器件休眠模式,并满足 ATA-8 ACS2 指令集规范要求。

SK海力士

Intel 突然宣布以 90 亿美元(约 601 亿)的价格将旗下的 NAND 闪存业务出售给了 SK 海力士 ,后者有可能成长为新的全球第二大闪存公司,SK海力士推出Gold P31系列SSD新品,是全球首个基于128层NAND闪存的消费者SSD。Gold P31采用的是128层TLC,PCIe NVMe Gen3接口,读取速度最高达3500MB/s,写入速度最高达3200MB/s,以满足长时间游戏的游戏玩家以及对性能和稳定性有较高要求的专业创作者和设计师。

英特尔

Intel基于144层3D QLC闪存Arbordale Plus,容量将比Intel目前的96层产品提升50%。

长江存储

128层QLC 3D NAND闪存芯片X2-6070研发成功,并已在多家控制器厂商SSD等终端存储产品上通过验证。

长江存储表示,X2-6070是业内首款128层QLC规格的3D NAND闪存,拥有业内已知型号产品中最高单位面积存储密度,最高I/O传输速度和最高单颗NAND闪存芯片容量。

每颗X2-6070 QLC闪存芯片共提供1.33Tb的存储容量。而在I/O读写性能方面,X2-6070及X2-9060均可在1.2V Vccq电压下实现1.6Gbps(Gigabits/s千兆位/秒)的数据传输速率。

旺宏

Macronix在2020年下半年生产48层3D NAND存储器。公司计划在2021年和2022年分别推出96层3D NAND和192层3D NAND。目前,该公司用于制造NAND的最先进技术是自2019年2月开始使用的19纳米平面技术,这款NAND Flash的第一个客户将是任天堂。

华邦

1、QspiNAND Flash

华邦提供了一系列相容于SPI NOR接口的QspiNAND产品,华邦的QspiNAND系列产品内建了ECC的功能,而且也能提供了连续好”块”的QspiNAND,这些都能让使用者并不需要额外的控制器。

2、OctalNAND Flash

全球首款采用x8 Octal接口的NAND Flash—华邦OctalNAND Flash产品可望提供车用电子与工业制造商高容量的储存内存产品,华邦电子首款采用全新接口的NAND产品,1Gb W35N01JW,连续读取速度最高可达每秒240MB, W35N-JW OctalNAND Flash采用华邦通过验证的46nm SLC NAND制程,提供卓越的数据完整性,且数据保存期更可达10年以上。此产品写入/抹除次数(Program/Erase Cycle)可达10万次以上,可符合关键任务型车用与工业应用所需的高耐用性与高可靠性。

兆易创新

GD5F4GM5系列采用串行SPI接口,引脚少、封装尺寸小,相比于上一代NAND产品,大大提升了读写速度,最高时钟频率达到120MHz,数据吞吐量可达480Mbit/s,支持1.8V/3.3V供电电压,能够满足客户对不同供电电压的需求;同时提供WSON8、TFBGA24等多种封装选择。

北京紫光存储

北京紫光存储Raw NAND颗粒是符合业界标准的闪存产品,适用于各类固态存储解决方案。Raw NAND颗粒需要搭配闪存控制器使用。全系采用业界领先的3D TLC闪存芯片。支持ONFI 4.0,最高读写支持667MT/s。采用业界领先的3D TLC闪存芯片,相比2D闪存芯片单位面积下容量大幅提升。

北京君正

公司Flash产品线包括了目前全球主流的NOR FLASH存储芯片和NAND FLASH存储芯片,其中NAND FLASH存储芯片主攻1G-4G大容量规格。

ISSI 系一家原纳斯达克上市公司,于 2015年末被北京矽成以7.8亿美元私有化收购,之后北京君完成对北京矽成100%股权收购。ISSI Introduces SLC NAND高性能4Gb SLC NAND主要用于嵌入式市场,能够满足工业、医疗,主干通讯和车规等级产品的要求,具备在极端环境下稳定工作、节能降耗等特点。

东芯

东芯串行NAND Flash产品为单颗粒芯片设计的串行通信方案,引脚少和封装尺寸小,且在同一颗粒上集成了存储阵列和控制器,带有内部ECC模块。使其在满足数据传输效率的同时,既节约了空间,提升了稳定性,也让其在成本上也极具竞争力,且提升了性价比。产品分为3.3V/1.8V两种电压,不仅能满足常规对功耗不敏感的有源器件,也使其在目前日益普及的移动互联网及物联网设备中,有足够的发挥空间。产品拥有多种封装,可更灵活的满足很多应用场景,比如常规的光猫,路由器,网络摄像监控,物联网及智能音箱等。

相关问答

闪存 与内存哪个技术含量高?

闪存和内存都是计算机存储设备的一种,它们的技术含量都非常高。闪存是一种非易失性存储器,它可以在断电的情况下保存数据,因此常用于存储长期数据。闪存技术...

iPhone13、P50、Mate40、小米11Ultra硬件成本分析,谁最良心?

2、由拆解图可知,其依旧采用了双层主板设计,在A15仿生处理器上方叠加了SK海力士制造的6GBLPDDR4X内存,另使用了NXP恩智浦显示端口芯片、Skyworks芯...3...

主板上的MOS是什么意思?

你的“MOS”表述不清楚,是主板上的MOS管子吗?若是,它是场效应晶体管器件,两个或三个一组,或多相组合,用来与主板上电压控制分配IC配合,进行DC-DC直...你的...

电池扣子是做什么用的 - 懂得

主板电池给主板闪存供电,主板闪存里存贮着电脑开机的信息。比如当前日期,时间等。一般电池可用几年。但换的电池如果是差的话只能管几个月。如果主...

电脑主板上的纽扣电池,为什么一天就没有电了 - 懂得

质量不好主板上的电池其作用是给主板上的闪存供电的,用来保存一些基本设置和时间等等,是否是电池不行了,只需要关机,切掉电源后,过段时间在开机,看...

闪存 和内存的区别?

闪存和内存都是计算机中重要的存储器元件。它们都用来存储数据和指令,但它们之间存在着显著的差异。首先,闪存和内存的容量大小不同。闪存的容量要小得多,它...

斐讯k1s和k2是什么cpu内存 闪存 多少?

斐讯的K1S、K2都是联发科MT7620A处理器,主频580MHz;闪存8MB(SPIROM),运行内存64MB。主要区别是供电、周边的功放等差异,K2的信号要好一点。斐讯的K1S、K2都...

哪位童鞋有谁知道!性价比高的工业 闪存 哪家实力好,工业 闪存 ...

[回答]闪存的工作环境温度;-40°C~70°C,保存温度:-50°C~80°C闪存自身工作温度通常不会超过50°C,如果超过而且长时间工作的话对闪存还是有一定影响的通...

内存和 闪存 的区别是什么?

1、通俗点来说,内存单纯用来存储数据的电平信号,需要持续供电,掉电即数据丢失,容量相对较小,但是存取速度快,使用寿命无限,内存一般是专供设备处理器CPU运...

闪存 和内存有什么区别啊?

2、闪存(FlashMemory)的特性和内存恰好相反,闪存虽然名字里有一个闪字,但闪存储存数据却是长久的,并不像内存那样,断电数据就丢失,所以常常用来储存...1、性...

 鸣泽百合  松本亜璃沙 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部