报价
HOME
报价
正文内容
nand flash层 NAND Flash层数之争:谁先触抵天花板?
发布时间 : 2024-11-24
作者 : 小编
访问数量 : 23
扫码分享至微信

NAND Flash层数之争:谁先触抵天花板?

得益于5G、大数据、云计算、物联网、人工智能等新兴产业的快速发展,存储器需求呈现倍数增长,发展空间广阔。其中,NAND Flash作为半导体存储器第二大细分市场,自然也备受关注。

回溯NAND Flash的历史

经历了半个世纪发展的半导体存储技术,如今已逐渐成熟,其衍生出的存储技术中包括Flash技术。

Flash技术分为NAND Flash和NOR Flash二种。虽然NOR Flash传输效率很高,但写入和擦除速度很慢,容量也较小,一般为1Mb-2Gb,常用于保存代码和关键数据,而NAND Flash能提供极高的单元密度,可达到高存储密度,适用于大量数据的存储。NAND Flash具有写入、擦除速度快、存储密度高、容量大的特点,也因此迅速成为了Flash主流技术。

NAND Flash技术自问世以来,已经积累了近40年的发展底蕴,并已成为存储器第二大细分市场。按存储单元密度来分,NAND Flash可分为SLC、MLC、TLC、QLC等,对应1个存储单元分别可存放1、2、3、4bit的数据。目前NAND Flash主要以TLC为主,不过QLC比重正在逐步提高。

值得一提的是,被提出很多年但一直没有商用落地的PLC终于露出水面。

今年8月初,SK海力士旗下NAND闪存解决方案提供商Solidigm在闪存峰会上展示了全球首款正在研发的PLC(五层单元)SSD。与QLC(四层单元)SSD相比,PLC SSD可在每个存储单元内存储5bit的数据。

NAND闪存从SLC、MLC、TLC、QLC及PLC一路走来,容量逐步上升,可市场更关心的是性能、可靠性、寿命、成本等问题是否也可以跟着优化。据Solidigm介绍,在相同的空间内,使用PLC SSD存储数据量可增加25%,可以用来解决固态存储未来的成本、空间和能耗等问题。该款SSD将首先用于数据中心产品,具体发布和上市时间待定。

从闪存结构来看,为满足各时期的市场需求,NAND Flash技术已从2D NAND升级到3D NAND,再到4D NAND。

时光追溯到1987年,时任日本东芝公司工程师岡本成之提出的一项发明彻底改写了人类信息时代的面貌,即2D NAND。当时东芝(2019年更名为铠侠)虽占据NAND Flash市场先机,但东芝战略重心偏向DRAM市场,忽略了NAND Flash的发展潜力。之后,英特尔和三星迅速加入市场,推出了2D NAND产品。

随后,全球厂商都围绕着2D NAND进行研发,随着2D NAND的线宽已接近物理极限,3D NAND应运而生

2007年,东芝推出BiCS类型的3D NAND。2D NAND的含义其实是二维平面堆叠,而3D NAND,顾名思义就是立体堆叠。3D NAND的到来,让NAND Flash技术直接从二维升华到三维的密度。

按英特尔的说法,2D NAND就像在一块有限的平面上建平房,这些平房整齐排列,随着需求量不断增加,平房的数量也不断增多,可面积有限,只能容纳一定数量的平房。相较于2D NAND,3D NAND则可以在同一块平面上建楼房,楼层越高,容量也就越大,在同样的平面中楼房的容积率远远高于平房,提供了更大的存储空间。可见,随着市场对存储性能需求的提升,2D NAND过渡到3D NAND是大势所趋的。

3D NAND自2007年进入大众视野后,2014年正式商用量产

2013年,三星推出第一代V-NAND(三星自称3D NAND为V-NAND)闪存。据三星介绍,V-NAND技术采用不同于传统NAND闪存的排列方式,通过改进型的Charge Trap Flash技术,在一个3D的空间内垂直互连各个层面的存储单元,使得在同样的平面内获得更多的存储空间。虽然该款堆叠层数仅为24层,但在当时却打破了平面技术的瓶颈,并使3D NAND Flash从技术概念推向了商业市场。

2014年,SanDisk和东芝宣布推出3D NAND生产设备;同一年,三星率先发售了32层MLC 3D V-NAND,这也意味着3D NAND正式商用化。继三星之后,美光也实现了3D NAND商用化。凭借其在容量、速度、能效及可靠性的优势,3D NAND逐渐成为行业发展主流。

3D之后,4D NAND悄然来临 。SK海力士在2018年研发的96层NAND Flash已超越了传统的3D方式,并导入4D方式,该款也成为了全球首款4D NAND Flash。

据了解,4D NAND技术是由APlus Flash Technology公司提出,其技术原理是NAND+类DRAM的混合型存储器,采用了“一时多工”的平行架构,而3D NAND只能执行“一时一工”。若一到十工同时在4D闪存系统执行时,其速度会比3D NAND快一到十倍。虽然相比3D方式,4D架构具有单元面积更小,生产效率更高的优点。不过,目前市面上还是以3D NAND为主。

从平房到摩天大楼,各大原厂的谋略

随着应用领域和使用场景愈发多样化,市场对NAND Flash的要求也随之提升,譬如想要更高的读写速度、最大化的存储容量、更低的功耗和成本等。可采用二维平面堆叠方式的2D NAND已经不再能满足市场的需求,这一切也促使NAND厂商必须谋定而后动,之后便沉下心来埋头研发,NAND Flash结构也从平房蜕变到摩天大楼。

采用三维平面堆叠方式3D NAND虽大大增加了存储空间,但如何突破3D NAND层数瓶颈,堆叠更高的摩天大楼,一直是市场的焦点,也是NAND厂商研发的痛点。在此之下,一场有关NAND Flash的层数之争已持续数年,NAND厂商早已吹响冲锋集结号,这一路也取得了不少的成就。

自2012年24层BiCS1 FLASHTM 3D NAND Flash之后,铠侠还研发出了48层、64层、96层、112层/128层。2021年,铠侠联手西部数据突破162层BiCS6 FLASHTM 3D NAND Flash。今年5月,西部数据与铠侠未来的路线图指出,预计2024年BiCS+的层数超过200层,如果一切按计划进行,2032年应该会看到500层NAND闪存。

最早在3D NAND领域开拓疆土的是韩国厂商三星。2013年8月,三星推出V-NAND(3D NAND)闪存,这也是全球首个3D单元结构“V-NAND”。之后,三星还陆续推出了32层、48层、64层、96层、128层、176层的V-NAND。2021年末,三星曾透露正在层数200+的V-NAND产品,目前暂未披露相关信息。

作为韩国第二大存储厂商的SK海力士也不甘落后,在2014年研发出3D NAND产品,并在2015年研发出36层3D NAND,之后按照48层、72层/76层、96层、128层、176层的顺序陆续推出闪存新产品。2022年8月3日,SK海力士再将层数突破到238层的新高度,该层数是当前全球首款业界最高层数NAND闪存,产品将于2023年上半年投入量产。

2016年,美光发布3D NAND,虽然发出时间晚于三星等上述几家厂商,但后期美光的研发实力不容小觑。在2020年美光抢先推出当时业界首款176层3D NAND,后又于2022年7月率先推出全球首款232层NAND,该产品现已在美光新加坡工厂量产。美光表示,未来还将发力2YY、3XX与4XX等更高层数。

目前从原厂动态来看,SK海力士和美光率先进入200+层时代,其中NAND闪存业界最高层数为SK海力士的238层,其次是美光的232层。主流技术NAND Flash 3D堆叠层数已跨越176层、232层、迈进238层,未来原厂还将发力200+层、300层、400层、甚至500层以上NAND技术。

在2021年IEEE国际可靠性物理研讨会上,SK海力士预测,3D NAND未来将达到600层以上。另有一些行业专家认为,3D NAND可以堆叠到1000层。可见,隔NAND Flash技术的天花板还有很高的距离。

△Source:全球半导体观察根据公开信息整理

NAND Flash未来既柳暗,又花明?

此前在5G手机、服务器、PC等下游需求驱动下,NAND Flash市场以可见的速度在增长。可今年,受疫情反复、通货膨胀、俄乌冲突等因素影响,全球形势变化多端。同时,存储器市场供需与价格波动时刻受产业发展动态影响,而作为存储器市场的主要构成产品之一,NAND Flash也不例外。

01、供需失衡

从消费端看,PC、笔电、智能手机等消费电子市场需求疲软,也影响到中上游产业链。其中,智能手机需求萎缩明显,出货量也随之减少。据TrendForce集邦咨询表示,受到传统淡季的加乘效应,使得2022年第一季智能手机生产表现更显疲弱,全球产量仅达3.1亿支,季减12.8%。

业内人士普遍认为,持续下降的最大原因是消费者使用智能手机的时间比以前更长。再加上智能手机技术更新快,新型号手机的性能与之前型号并无特别大的差距,从某种程度上看,这也降低了消费者的购买欲。

从供应端来看,TrendForce集邦咨询7月表示,由于需求未见好转,NAND Flash产出及制程转进持续,下半年市场供过于求加剧,包含笔电、电视与智能手机等消费性电子下半年旺季不旺已成市场共识,物料库存水位持续攀升成为供应链风险。因渠道库存去化缓慢,客户拉货态度保守,造成库存问题漫溢至上游供应端,卖方承受的抛货压力与日俱增。

TrendForce集邦咨询预估,由于供需失衡急速恶化,第三季NAND Flash价格跌幅将扩大至8~13%,且跌势恐将延续至第四季。

02、原厂持坚定信念

受手机与个人电脑等消费电子市场需求疲软等因素影响,美光于6月悲观预测,今年第四财季营收为72亿美元,上下4亿美元浮动,这一数据低于业界预期;又于8月再度下调第四季度业绩指引,该季度经调整营收将位于或低于此前预计的68-76亿美元区间下沿。

此前美光首席执行官Sanjay Mehrotra在财报电话会议上表示,预计智能手机销量将较去年下降约5%,而个人电脑销量可能比去年下降10%,美光正在调整产量增长,以适应需求的减弱。不过,TrendForce集邦咨询8月在最新的研究指出,受到高通胀冲击,全球对于消费市场普遍抱持并不乐观的态度,基于周期性的换机需求以及新兴地区的新增需求带领下,智能手机生产量仍会小幅上升。

SK海力士此前也预测,由于搭载存储器的电脑和智能手机的出货量将低于原来的预测,并且服务器用存储器的需求也因客户的库存优先出货,预计下半年的存储器出货量将有所放缓。不过中长期来看,数据中心的存储器需求将持续成长。

三星、SK海力士、美光、西部数据、铠侠等存储器原厂在最新财报中均表示虽然部分市场需求疲软,但都坚定看好产业未来前景,各原厂保持坚定的信心也为存储器市场扫去部分阴霾。

据TrendForce集邦咨询最新研究显示,NAND Flash仍处于供过于求状态,但该产品与DRAM相较更具价格弹性,尽管预期明年上半年价格仍会走跌,但均价在连续多季下滑后,可望刺激enterprise SSD市场单机搭载容量成长,预估需求位元成长将达28.9%,而供给位元成长约32.1%。

结 语

长远来看,NAND Flash市场前路虽柳暗,但花明。同时,NAND厂商马不停蹄地研发,今年有的再上升一个台阶,有的还在停步研发,最终谁先触抵NAND Flash层数天花板,我们静待观之。

NAND Flash跨入128层时代

日前,美光发布第二季度财报,其在电话会议中美光透露,即将开始批量生产其基于公司新的RG(replacement gate)架构的第四代3D NAND存储设备。至此,美光,东芝,SK海力士和三星都已正式挺进128层,甚至更高层级,存储大厂们已经为3D NAND的堆叠层数而疯狂。

市场需求无疑是最大的驱动力,随着5G及物联网技术的发展,数据正呈现出爆炸式的增长,由此对于存储的需求也越来越大。

从2D到3D

此前的闪存多属于平面闪存 (Planar NAND),我们一般称之为“2D NAND”。巨大需求推动下的2D NAND 工艺不断发展,向1znm(12-15nm)逼近, 平面微缩工艺的难度越来越大,接近物理极限,但尽管如此,存储密度也很难突破128GB容量。并且带来的成本优势开始减弱,有资料指出,16nm制程后,继续采用2D 微缩工艺的难度和成本已超过3D技术,因此各存储大厂都在积极推出3D NAND。

来源:互联网

3D NAND,简单来说,就是通过die堆叠技术,加大单位面积内晶体管数量的增长。有资料称,3D NAND比2D NAND具有更高的存储容量,若采用48层TLC 堆叠技术,存储密度可提升至256GB,轻松突破了平面2D NAND 128GB 的存储密度极限值。

同时还具有更高的可靠性,NAND闪存一直有着电荷之间电场干扰问题,导致需要flash control芯片透过复杂的算法来防止和纠正这么干扰带来的错误,最后拖累了资料的传输速度。透过3D堆叠技术,单位储存空间变大,电荷间的电场干扰降低,大幅提升了产品的可靠性,也因资料错误降低,不仅提升了资料的传输速率,更因简化了纠错算法,进而降低了功耗,一举数得。进一步凸显了成本效益。

来源:三星

在主要的NAND厂商中,三星于2013年8月就已经宣布进入3D NAND量产阶段,2014 年第 1 季正式于西安工厂投产。其他几家公司在3D NAND闪存量产上要落后三星至少2年时间。

东芝、美光、SK海力士2015年正式推出3D NAND闪存。Intel 2016年4月初才发布了首款3D NAND闪存的SSD,不过主要是面向企业级市场的。在这些存储大厂的推动下,NAND Flash正在快速由2D NAND向3D NAND普及。

来源:中国闪存市场

2019年Q3度全球NAND闪存市场明显复苏,三星、铠侠(原东芝存储)、美光等主要存储厂商的出货量均有较大幅度增长。据DRAMeXchange数据显示,2019年Q4季度全球NAND闪存市场营收125.46亿美元,环比增长8.5%,位元出货量增长10%左右,合约价也由跌转涨。

技术升级一向是存储芯片公司间竞争的主要策略。随着存储市场由弱转强,处于新旧转换的节点,各大厂商纷纷加大新技术工艺的推进力度,加快从64层3D NAND向96层3D NAND过渡,同时推进下一代128层3D NAND技术发展进程,以期在新一轮市场竞争中占据有利位置。

如前文所言,3D NAND主要依靠die堆叠,采用这种方式可以使得每颗芯片的储存容量可以显著增加,而不必增加芯片面积或者缩小单元,使用3D NAND可以实现更大的结构和单元间隙,这有利于增加产品的耐用性。因此想要增加存储空间就需要不断的增加堆叠层数,这也就是为什么先进存储厂商一直想要追求更多堆叠层数的原因。

在发展3D NAND的过程中,这些厂商通常采用两种不同的存储技术:电荷撷取技术(CTF, Charge Trap Flash)和浮栅(FG, Floating Gate)技术。

CSDN博主“古猫先生”指出,这两种技术没有好坏之分,应该是各有千秋。

CTF电荷撷取技术实现原理和过程更加简单,有利于加快产品进程。此外,电荷存储在绝缘层比存储在导体浮栅中更加的可靠。

FG浮栅技术从2D NAND开始已经很成熟。另外,采用FG浮栅技术的3D NAND的存储单元相互独立,而采用CTF电荷撷取技术的3D NAND的存储单元是连接在一起的。这样的话,FG浮栅技术的存储过程更具操作性。

三星

三星就是主推CTF电荷撷取技术的厂商 ,其3D NAND的发展轨迹是48层-64层-96层-128层+。从2013年开始量产第一代3D V-NAND,到2018年,开始批量生产第五代V-NAND 3D堆叠闪存,9x层的堆叠设计;一直引领着存储行业在闪存容量和性能方面的持续性创新。

三星在2019 年 6 月就推出了第六代 V-NAND(128 层 256Gb 3D TLC NAND),8 月份宣布基于该技术已批量生产 250GB SATA SSD,而在 11 月实现了第六代 128 层 512Gb TLC 3D NAND的量产。

据三星官方消息显示,新款 V-NAND 运用三星电子有的“通道孔蚀刻”技术,向前代 9x 层单堆叠架构增加了约 40% 单元。这是通过构建由 136 层组成的导电模具堆栈,然后垂直自上而下穿过圆柱孔,形成统一的 3D 电荷撷取闪存 (CTF) 单元实现的。

SK海力士

SK海力士也采用CTF电荷撷取技术,在由2D转进3D NAND世代的竞争中,SK海力士似乎一直处在掉队状态,落后过去 2D 平面式 NAND Flash 时代。因此,SK 海力士在全球 NAND Flash 排名中,已经被甩到五名之外。这对于在 2D 时代实力很强的 SK 海力士,属实有点让人意外。

2019年,在美国闪存峰会上,SK海力士公布3D NAND技术路线图,此技术路线图展示,在2030年3D NAND将达到800多层的堆叠高度。SK海力士将该技术称为第6版4D NAND,但其他制造商都将其称为3D NAND。其中176层对应1.38 TB,500层对应3.9 TB,800层对应6.25 TB。

SK海力士在 2019 年 6 月份宣布推出首款 128 层 TLC 4D NAND,11 月份向主要客户交付基于 128 层 1Tb 4D NAND 的工程样品并较预期提前量产。这种先发优势,将会有助于抢占市场,更快达到规模经济。

SK海力士128层TLC 4D NAND将在2020年进入投产阶段。同时正在开发下一代176层4D NAND,将通过技术优势,持续增强其在NAND Flash市场上的竞争力。

东芝

东芝方面,也是CTF电荷撷取技术,东芝是目前日本最大的半导体制造商,也是闪存技术的缔造者,于1989年最早研制出了NAND闪存。虽然东芝公司最早提出3D NAND架构,并于2012年成功研发16层3D NAND实验品,但却迟迟未推出相关产品上市,导致其市场步伐落于三星之后。

据悉,迫于三星的市场压力,东芝计划采用P-BiCS(Pipe-shaped Bit Cost Scalable)技术量产3D NAND产品,样品于2014年Q1送样,计划于2016年第二季度量产;且在2016年度至2018年度,东芝大举投资半导体存储器,投资额将达8千亿日元。

2018 年6 月东芝将铠侠独立出去,并卖给由美国贝恩资本主导的「日美韩联盟」。东芝目前仍持有铠侠40.2%股权。

1月31日,铠侠宣布已研发出3D NAND Flash「BiCS FLASH」的第5代产品,采用堆叠112层制程技术,且已完成试作、确认基本动作。该款堆叠112 层的3D NAND 试作品为512Gb(64GB),采用3bit/cell(TLC:Triple Level Cel)技术的产品,预计将在2020 年第一季进行样品出货,除将用来抢攻需求持续扩大的资料中心用SSD、商用SSD、PC 用SSD 及智能手机等市场外,也将用来抢攻5G、人工智能(AI)、自动驾驶等新市场需求。

铠侠指出,该款112 层3D NAND 产品为该公司和合作伙伴美国Western Digital(WD)所携手研发完成,今后将利用双方共同营运的四日市工厂以及北上工厂进行生产,且今后也计划推出采用堆叠112 层制程技术的1Tb(128GB)TLC 产品以及1.33Tb 的4bit/cell (QLC:Quadruple-Level Cell)产品。关于上述112 层3D NAND 的量产时间,WD 宣布,预定将在2020 年下半年。

美光

美光过去在 2D 平面式 NAND FLash 技术世代,一直与英特尔联合开发技术、分摊产能建置成本等。

不过,从 2D 转进 3D NAND 世代中,美光已经直逼拥头部厂商水准。IC 设计业者分析,美光在 3D NAND 技术层面,已经直逼三星水准,其读写 read/write performance 只有三星可以抗衡,且在相同layer 下,其die size 也是业界最小,技术实力在 3D NAND 时代大幅追上来

2019年10月初,美光宣布第一批第四代3D NAND存储芯片流片出样。第四代3D NAND基于美光的RG架构,采用128层工艺。在“Mircon Insight2019”技术大会上,美光科技执行副总裁兼首席商务官Sumit Sadana表示,128层3D NAND如果被广泛使用,将大大降低产品每比特成本。

如前文所言,他们即将开始批量生产其基于公司新的RG架构的第四代3D NAND存储设备,美光第四代的28层3D NAND即将流片表示,表示该公司新设计不仅仅是一个概念。

同时,美光还没有计划将其所有产品线都转换为最初的RG处理技术,因此明年公司范围的每位成本将不会大幅下降。尽管如此,该公司承诺在其后续RG节点广泛部署之后,到2021财年(从2020年9月下旬开始)将实现有意义的成本降低。

长江存储

相比国际先进水平,国内厂商长江存储也在3D NAND上有所突破,并推出了其独特的Xtacking技术。

据相关报道显示,传统3D NAND架构中,外围电路约占芯片面积的20—30%,降低了芯片的存储密度。随着3D NAND技术堆叠到128层甚至更高,外围电路可能会占到芯片Xtacking技术将外围电路连接到存储单元之上,从而实现比传统3D NAND更高的存储密度。

据悉,长江存储的64层3D NAND闪存产品将在2020年进入大规模量产,此外,长江存储还将在今年跳过96层,直接投入128层闪存的研发和量产工作。

总结

从进度来看,128层3D NAND基本将在今年大量进入企业存储市场,逐渐成为主流。但是从此亦可看出,存储厂商间的新一轮技术升级之争亦将变得更加激烈。

半导体专家莫大康指出,存储芯片具有高度标准化的特性,且品种单一,较难实现产品的差异化。这导致各厂商需要在工艺技术和生产规模上比拼竞争力。

因此,每当市场格局出现新旧转换时,厂商往往打出技术牌,以期通过新旧世代产品的改变,提高产品密度,降低制造成本,取得竞争优势。

值得注意的是,今年由于疫情原因,可能影响智能手机及笔记本等消费电子产品的出货,闪存出货量预计会衰退或者持平。因此也有业内人士指出,存储厂可能会更趋向于加大96层3D NAND的生产。

对于中国存储业来说,技术上从2D到3D的改变,是一个难得的发展机遇,但是如何抓住这个机遇仍具挑战。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2271期内容,欢迎关注。

★RDA系创业公司盘点:本土射频的半壁江山

★日本10年关闭36座晶圆厂背后

★3nm成为下一个关键战场

存储|射频|CMOS|设备|FPGA|晶圆|苹果|海思|半导体股价

相关问答

flash 里面引导 和被引导层是什么?_。补间是什么?_?

引导层:绘制路径的图层,比如说两个点连成的一条线,直线曲线都可以。被引导层:图案可以为绘制的图形或对象定位,元件如果点在这条线上就可以跟着线运动,范...

我想问一下:在 Flash 中引导 和遮罩层可以同时使用吗?如果可以能举例说明吗?

不能同时用因为遮罩层可以和普通图层进行转换(右键属性)而引导层是特殊的图层不能和普通图层进行转换也就是引导层不能和遮罩层进行转换所以不能在一个图层...

长江存储的3D NAND FLASH 量产了吗?

虽然赵伟国昨日刚刚辞去清华紫光集团旗下紫光控股与紫光国芯两家子公司董事长及董事职务,但是他仍然是紫光集团董事长。今日(4月9日)赵伟国公开亮相于中国深圳...

flash 中怎么把两个遮罩 放一起?

1通过使用交集模式,将两个遮罩层合并在一起。2原因是在交集模式下,可以将多个遮罩层的效果叠加在一起,形成一个更复杂的遮罩效果。3在实际应用中,可以通过...

flash 时间轴上“ ”是?

时间轴上的层(除了遮罩层、引导层),相当于一张张透明的玻璃纸,一个图层等于一张,这是最形象、最简单的解释。时间轴上的层(除了遮罩层、引导层),相当于一张张...

Flash 里的遮罩 有什么作用?在什么时候用?

在Flash动画中,“遮罩”主要有2种用途,一个作用是用在整个场景或一个特定区域,使场景外的对象或特定区域外的对象不可见,另一个作用是用来遮罩住某一元件的一...

怎么用 分开,让下拉菜单在 flash 上面? - E9ZmbfunC 的回...

在flash代码中加入,让背景透明就可以了,不需要非得用层可以在CSS样式表中为下拉菜单添加一个z-index属性,设置一个比flash更大的值,以便使下拉菜单...

flash 怎么做一个遮罩所有 - 懂得

不需要做遮罩你在最上面画一个空心的矩形,中间空心的部份和场景一样大小就行了,外面就遮住了下面的图层全选,右键修改为被遮罩层

【在 flash 8中,怎样用引导 做:太阳在中心,月球绕太阳转的同...

[最佳回答]第一步:月亮转地球先建二个层,引导层用铅笔画一个圆圈、被引导层画一个月亮,注意要将此月亮转为MC,按F8键第二步:地球转太阳将一步所形成的整个MC转...

手套机的发展历史

【手套机历史】手套机历史悠久,最早可以追朔到1948年。在著名的纺织国度意大利,一家名叫普罗蒂的公司,最早发明出了全机械的手套机。经过了五...

 百度国潮季  迪丽热巴加入跑男 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部