资讯
HOME
资讯
正文内容
nand flash ecu ReRAM新型存储器如何影响未来存储格局?
发布时间 : 2024-10-11
作者 : 小编
访问数量 : 23
扫码分享至微信

ReRAM新型存储器如何影响未来存储格局?

图片来源@视觉中国

文 | 云岫资本,作者 | 刘晓东

存储器是现代信息系统最关键的组件之一,已经形成主要由DRAM与NAND Flash构成的超千亿美元的市场。随着万物智联时代的到来,人工智能、智能汽车等新兴应用场景对存储提出了更高的性能要求,促使新型存储器迅速发展 ,影响未来存储器市场格局。

我国正在大力发展存储产业,除了在传统存储器上努力实现追赶,也在提前布局新型存储器,这将是未来存储产业生态的重要部分。

新型存储器究竟指什么,有哪些技术原理,竞争格局如何,未来发展前景会是怎样?

本期「云岫研究」,我们聚焦于新型存储器中的阻变存储器 (ReRAM或RRAM,Resistive RAM) ,并通过分析其技术、应用场景与模式,得出如下判断:

1、万物智联时代,需要速度、功耗、容量等性能更强的新型存储器;

2、对比四大新型存储器,ReRAM在密度、工艺制程、成本和良率上具备明显优势;

3、AIoT、智能汽车、数据中心、AI计算(存算一体)将是ReRAM的重要发展机遇;

4、IDM模式是ReRAM厂商的最佳选择;

5、新型存储器是中国实现存储领域弯道超车的最佳机会。

存储器是半导体最大细分市场, 新型存储器是未来选择

存储器是半导体产业的风向标和最大细分市场,约占半导体产业的三分之一。智能时代的到来,将引起存储行业的新一轮爆发。

据YOLE统计,2019年以来,存储器成为半导体增速最快的细分行业,总体市场空间将从2019年的1110亿美元增长至2025年的1850亿美元,年复合增长率为9%。细分市场中,新型存储器市场增速最快 ,将从5亿美元增长到40亿美元,年复合增长率达到42%,发展潜力巨大。

图1:全球存储器市场规模及增速(资料来源:YOLE)

存储器可以按照断电是否能保存数据 分为两类。

图2:存储器分类(云岫资本整理)

第一类易失性存储器 是以动态随机存取存储器(DRAM)静态随机存取存储器(SRAM) 代表的易失性存储器,二者均具备高读写速度。其中SRAM速度高于DRAM,但密度低于DRAM,这是因为一个DRAM存储单元仅需一个晶体管和一个小电容,而每个SRAM单元需要四到六个晶体管。其共同的缺点是容量较低且成本高,一般分别用作主存和缓存。

第二类非易失性存储器 包括以NOR FLASHNAND FLASH 为代表的传统存储器和四种新型存储器 。NOR FLASH的容量较小且写入速度极低,但读速较快,具备芯片内执行的特点,适合低容量、快速随机读取访问的场景;NAND FLASH的容量大成本较低,但读写速度极低,一般用于大容量的数据存储。

除FRAM以外的新型存储器均是通过阻值高低变化实现“0”“1”数据存储,四种新型存储器均具备非易失性,断电后仍可以保存数据,相比传统存储器在读写速度、功耗、寿命等方面各有优势。

存储器的发展取决于应用场景的变化。

图3:存储的过去、现在与未来——场景应用决定市场趋势(云岫资本整理)

20世纪70年代起,DRAM进入商用市场,并以其极高的读写速度成为存储领域最大分支市场;功能手机出现后,迎来NOR Flash市场的爆发;进入PC时代,人们对于存储容量的需求越来越大,低成本、高容量的NAND Flash成为最佳选择。

智能化时代里,万物智联,存储行业市场空间将进一步加大,对数据存储在速度、功耗、容量、可靠性层面也将提出更高要求。而DRAM虽然速度快,但功耗大、容量低、成本高,且断电无法保存数据,使用场景受限;NOR Flash和NAND Flash读写速度低,存储密度受限于工艺制程。市场亟待能够满足新场景的存储器产品,性能有着突破性进展的新型存储器即将迎来爆发期。

对比四种新型存储器, ReRAM在密度、工艺制程、成本和良率上 具备明显优势

目前,新型存储器主要有4种:

相变存储器(PCM),以Intel和Micron联合研发的3D Xpoint为代表;

铁电存储器(FeRAM),代表公司有Ramtron和Symetrix;

磁性存储器(MRAM),代表公司是美国Everspin;

阻变存储器(ReRAM),代表公司有松下、Crossbar和昕原半导体。

表1:4种新型存储器参数对比(资料来源:Objective Analysis)

相变存储器(PCM或PCRAM,Phase-change RAM)

PCM的原理是通过改变温度,让相变材料在低电阻结晶(导电)状态与高电阻非结晶(非导电)状态间转换。

图4:PCM原理(资料来源:Intel)

PCM虽然读写速度 比NAND Flash有所提高 ,但其RESET后的冷却过程需要高热导率,会带来更高功耗 ,且由于其存储原理是利用温度实现相变材料的阻值变化,所以对温度十分敏感,无法用在宽温场景 。其次,为了使相变材料兼容CMOS工艺,PCM必须采取多层结构,因此存储密度过低 ,在容量上无法替代NAND Flash。除此之外,成本和良率也是瓶颈之一

Intel和Samsung于2006年生产了第一款商用PCM芯片。2015年,Intel和Micron合作开发了名为3D XPoint的存储技术,该技术也是PCM的一种。2018年双方结束了联合开发工作,2021年3月,Micron宣布停止所有基于3D XPoint技术产品的进一步开发。

铁电存储器 (FRAM或FeRAM,Ferroelectric RAM)

FRAM并非使用铁电材料,只是由于存储机制类似铁磁存储的滞后行为,因此得名。FRAM晶体材料的电压-电流关系具有可用于存储的特征滞后回路。

图5:FRAM原理(资料来源:Objective Analysis)

FRAM优势在于读写速度快、寿命良好 ,但其存储单元基于双晶体管,双电阻器单元,单元尺寸至少是DRAM的两倍,存储密度受限,成本较高 。并且它的读取是破坏性的 ,每次读取后必须通过后续写入来抵消,以将该位的内容恢复到其原始状态。

材料方面,目前铁电晶体材料PZT(锆钛酸铅)和SBT(钽酸锶铋)都存在疲劳退化、污染环境等问题,尚未找到完美商业化的材料

目前,Ramtron(归属于Cypress)和Symetrix两家公司正主导FRAM的开发。

磁性存储器 (MRAM,Magnetic RAM)

目前主流的MRAM技术是STT MRAM,使用隧道层的“巨磁阻效应”来读取位单元,当该层两侧的磁性方向一致时为低电阻,当磁性方向相反时,电阻会变得很高。

图6:MRAM原理(资料来源:Avalanche Technology)

STT MRAM虽然性能较好 ,但临界电流密度和功耗仍需进一步降低 ,目前MRAM的存储单元尺寸仍较大且不支持堆叠,工艺较为复杂 ,大规模制造难以保证均一性,存储容量和良率爬坡缓慢。在工艺取得进一步突破之前,MRAM产品主要适用于容量要求低的特殊应用领域,以及新兴的IoT嵌入式存储领域。

商业上,Everspin与Global Foundries合作,UMC与Avalanche Technology合作,推广STT-MRAM。

阻变存储器 (ReRAM或RRAM,Resistive RAM)

阻变存储器全称是电阻式随机存取存储器,是以非导性材料的电阻在外加电场作用下,在高阻态和低阻态之间实现可逆转换为基础的非易失性存储器。ReRAM包括许多不同的技术类别,比如氧空缺存储器(OxRAM,Oxygen Vacancy Memories)、导电桥存储器 (CBRAM,Conductive Bridge Memories)、金属离子存储器(Metal Ion Memories)以及纳米碳管 (Carbon Nano-tubes)。

图7:ReRAM原理(资料来源:Objective Analysis)

ReRAM的单元面积极小 ,可做到4F²,读写速度是NAND FLASH的1000倍,同时功耗下降15倍。

ReRAM工艺也更为简单 。以Crossbar和昕原半导体为例,其采用对CMOS友善的材料,能够使用标准的CMOS工艺与设备,对产线无污染,整体制造成本低,可以很容易地让半导体代工厂具备ReRAM的生产制造能力 ,这对于量产和商业化推动有很大优势。

图8:Crossbar的电阻切换机制和新型3D堆叠ReRAM(资料来源:Crossbar官网)

上图是Crossbar的ReRAM结构设计,大致分为顶部电极,开关介质和底部电极三层结构,其电阻切换机制是:两个电极之间施加电压时,切换材料中将形成纳米细丝,通过细丝连接上下两个电极,改变转换层的电阻,细丝相连代表存储值“1”,细丝断裂代表存储值“0”。

由于电阻切换机制基于金属导丝,因此Crossbar ReRAM单元非常稳定,能够承受从-40°C到125°C的温度波动,写周期为1M +,在85°C的温度下可保存10年。

从密度、能效比、成本、工艺制程和良率各方面综合衡量,ReRAM存储器在目前已有的新型存储器中具备明显优势。

ReRAM国内外发展现状

在商业化上,Crossbar、昕原半导体、松下、Adesto、Elpida、东芝、索尼、美光、海力士、富士通等厂商都在开展ReRAM的研究和生产,其中专注IP授权的Crossbar对于ReRAM的基础技术研发走在了前列。

Crossbar研发了两种存储架构——1T1R和3D堆叠式架构,3D堆叠技术可实现存储级内存,内置选择器允许多种存储阵列配置,单个晶体管可以驱动数千个存储单元,可以组织成超密集的3D交叉点阵列,可堆叠并能够扩展到10nm以下,从而为单个裸片上的TB级存储铺平了道路。

在代工厂方面,中芯国际(SMIC)、台积电(TSMC)和联电(UMC)都已经将ReRAM纳入自己未来的发展版图中。

根据公开信息,已量产的海外ReRAM存储器主要有Adesto的130nm CBRAM松下的180nm ReRAM 。松下(Panasonic)在2013年开始出货ReRAM,成为了世界第一家出货ReRAM的公司。接着,松下与富士通联合推出了第二代ReRAM技术,基于180nm工艺。而Adesto 一直在缓慢地出货低密度 CBRAM。

国内,昕原半导体 在Crossbar的基础上实现了技术核心升级和工艺制程的改进,实现28nm量产,并且已建成自己的首条量产线,拥有了垂直一体化存储器设计加制造的能力。兆易创新和Rambus宣布合作建立合资企业合肥睿科微 (Reliance Memory),进行ReRAM技术的商业化,但目前还无量产消息。

ReRAM迎来四大发展机遇: AIoT、智能汽车、数据中心、AI计算

AIoT

AIoT指人工智能技术与物联网在实际应用中的落地融合。根据艾瑞咨询数据,2019 年中国 AIoT 产业总产值为3808 亿元,预计2022年将达7509亿元,年复合增长率达25.4%。

AIoT需要数据的实时交互,因此不仅要求存储器低功耗 ,也需要高读写和低延迟 。目前的NOR Flash存储密度低、容量小、功耗高,无法实现高写入速度。而ReRAM在保证读性能的情况下,写入速度可提升1000倍,同时可实现更高存储密度和十分低的功耗 ,未来将会是取代NOR Flash成为万物智联时代存储器的最佳选择。

随着人与物交互信息越来越多,很多私人信息会被存储记录,物联网在带来生活便利的同时,也带来了潜在的数据安全隐患,针对物联网的攻击甚至可以通过设备传递到现实生活中带来难以想象的破坏。AIoT应用越来越多要求具备安全属性。然而,目前普遍的安全芯片+Nor Flash方案存在成本高、空间受限等痛点。PUF (Physically Unclonable Function,物理不可克隆函数)+新型存储器芯片有望成为解决智能设备存储与安全问题的主流方案。

PUF是一种利用芯片在半导体生产过程中的工艺波动性来生成芯片唯一函数,能够做到一芯一密,可称之为“芯片指纹”。目前,昕原半导体设计了基于ReRAM存储器的PUF芯片,可以同时具备存储加安全两个功能。

智能汽车

汽车电子根据功能可分为车身控制系统(ECU)、安全系统、娱乐设备、底盘控制、高级驾驶辅助系统(ADAS)等,都需要半导体器件实现相关功能,包括存储器、传感器、光电器件、射频器件、功率器件等。

根据Counterpoint Research预测,未来单车存储容量将达到2TB-11TB,一辆L4/L5级自动驾驶汽车至少需要74GB DRAM和1TB NAND。据IHS预测,全球汽车存储IC市场规模2025年约为83亿美元。

智能汽车对存储器的要求不仅在于温度和可靠性 。控制系统需要智能化实时决策;ADAS系统时刻产生大量图像数据;娱乐系统需要更加智能来提升用户体验;能耗对于智能汽车也是关键性因素……这些都要求存储器具备大量的数据实时吞吐能力,保证存储稳定性和高能效比。

传统的NOR Flash无法满足未来智能汽车对读写速度(特别是XIP程序执行效率)的要求;NAND Flash难以实现XIP片上的程序执行并且极慢;DRAM和SRAM容量有限,断电数据会丢失。新型存储器中,ReRAM不仅满足高读写速度和存储密度的要求 ,同时延迟可降低1000倍 ,可满足未来智能驾驶高实时数据吞吐量。

安全性方面,ReRAM具备宽温和可靠性 。未来有望出现高性能、高集成度、高稳定性和低功耗的车规ReRAM存储器。

数据中心

AI时代,数据呈现爆发式增长,越来越多的数据将在云端进行处理,根据思科预测,2021年全球将有1327EB数据存储在数据中心,6年复合增长率率高达41%。根据《2019-2020年中国IDC产业发展研究报告》预测,2022年中国数据中心市场规模将超过3200亿元。

数据量的爆发催生对存储器新的增量市场和性能要求,据SUMCO预测,数据中心对SSD存储的需求将在2019年到2023年之间实现46%的复合增长。但目前数据中心存储器性能发展速度无法跟上计算需求,并且功耗仍是数据中心成本最高的因素之一。

传统机械硬盘虽然寿命长成本低,但是读写速度极低且发热和噪声明显。DRAM虽速度较快但为易失性存储器,断电无法保存数据且成本极高,无法作为大量存储数据使用。而NAND读写速度仍较慢,另一方面功耗较高,性能和容量与工艺制程强相关。现有存储器无法跟上未来对数据高读写速度,低延迟,低功耗的需求。

ReRAM相较NAND可提升100倍的读写性能,同时保持更低的功耗和高存储密度 ,有望解决未来数据中心高能效比,低延迟的需求,实现更高性能的AI数据中心。

AI计算(存算一体)

人工智能是目前技术发展的重要趋势,根据沙利文咨询数据,2016-2024年人工智能的年均增长率达到33.98%,预计2024年将超过6157亿美元。而我国人工智能产业规模预计2024年将逼近8000亿元 ,约占全球总体产业规模的20%,复合增长率达到48.97%,大大超过全球平均水平。

算力、算法、数据量是人工智能发展的三大基础要素,它们决定了AI计算的性能,这其中的两点都与存储相关:数据由存储器承载,数据量决定了AI计算模型的准确度;算力方面,未来对芯片计算性能和延迟性都提出了更高要求。

目前的冯诺依曼架构,存储单元和计算单元独立分开,搬移数据的过程需要消耗大量时间和能量 ,并且由于处理器和存储器的工艺路线不同,存储器的数据访问速度难以跟上CPU的数据处理速度,性能已远远落后于处理器。所以,冯诺依曼架构在数据处理速度和能效比等方面存在天然限制,这被称为“存储墙”。

存算一体架构通过将存储单元和计算单元融为一体,消除了数据访存带来的延迟和功耗,可以突破“存储墙” ,实现更高的算力和更高的能效比。

图9:存算一体突破存储墙(云岫资本整理)

目前存算一体有两种实现方式,第一种是基于易失性存储器DRAM和SRAM ,但由于存储器制造工艺和逻辑计算单元的制造工艺不同,无法实现良好的融合,目前只能实现近存计算,仍存在存储墙问题 ,甚至因为互连问题可能还会带来性能损失。并且,因为SRAM和DRAM是易失性存储器,需要持续供电来保存数据,仍存在功耗和可靠性的问题。

第二种是结合非易失性新型存储器 ,可以利用欧姆定律和基尔霍夫定律在阵列内完成矩阵乘法运算,而无需向芯片内移入和移出权重。新型存储器是通过阻值变化来存储数据,而存储器加载的电压等于电阻和电流的乘积,相当于每个单元可以实现一个乘法运算,再汇总相加便可以实现矩阵乘法,所以新型存储器天然具备存储和计算的属性 。在这种情况下,同一单元就可以完成数据存储和计算,消除了数据访存带来的延迟和功耗,是真正意义上的存算一体。

新型存储器中,ReRAM 具有高集成密度、高开关比、高计算精度、高能效比和制造兼容CMOS工艺等优良特性,被认为是实现存算一体的最佳选择之一

图10:新型存储器实现存算一体(Nature Nanotechnology)

IDM模式是ReRAM厂商的最佳选择

存储行业中,纯芯片设计公司难以摆脱对代工厂的依赖,不仅生产周期长、成本高,而且无法根据生产工艺做出适配性设计;而纯代工企业利润较低无法享受更多新技术红利。因此,目前世界前十大半导体公司中的4家存储公司,全部为IDM模式,拥有存储芯片设计加制造的全套能力。

对于以ReRAM为代表的新型存储器而言,IDM模式不仅工艺和产能自主可控,同时可以不断进行迭代优化,通过高良率和高性能迅速筑起行业壁垒,是存储器行业发展最佳的商业模式。

新型存储器是 中国实现存储领域弯道超车的最佳机会

目前中国存储器市场国产化率极低 ,传统存储器先进技术均掌握在美国、韩国和日本手中,中国在最新产品性能上落后5-10年。三星、海力士和美光垄断了以DRAM为代表的易失性存储器市场,而以NAND为代表的非易失性存储器也被三星、铠侠、闪迪、美光和海力士垄断。

在ReRAM等新型存储器的发展上,中国与其他国家站在同一起跑线 ,都有机会出现下一个三星和海力士。

在这中国存储产业突围的关键时期,一系列相关政策陆续出台,重点支持存储行业。

国家“十四五”规划 纲要中,在加强原创性引领性科技攻关方面,“先进存储技术升级” 被列入“科技前沿领域攻关”重点领域;在加快推动数字产业化方面,《纲要》提到,培育壮大人工智能、大数据、区块链、云计算、网络安全等新兴数字产业,提升通信设备、核心电子元器件、关键软件等产业水平。

图11:“十四五”规划纲要-专栏2 科技前沿领域攻关

2021年3月,临港新片区发布集成电路产业专项规划(2021-2025) ,提到要“在阻变存储器(ReRAM)等新兴领域实现增量发展”

图12:节选自《临港新片区集成电路产业专项规划(2021-2025)》

目前,很多曾在世界顶尖企业担任高管的产业专家纷纷回国创业,不仅带来了先进技术和经验,也吸引了一批有志之士共同打造中国芯。天时地利人和之下,中国新型存储器未来可期!

参考资料:

[1]Jim Handy. Objective Analysis White Paper : NEW MEMORIES FOR EFFICIENT COMPUTING Reducing Energy Consumption in Battery and Large-Scale Systems,2018.[2]Yu, Shimeng. Resistive Random Access Memory (RRAM)[J]. Synthesis Lectures on Emerging Engineering Technologies, 2016, 2(5):1-79.[3]刘明.半导体存储器技术[J].科技导报,2019, 037(003):62-65.[4]刘森, 刘琦. 阻变存储器发展现状[J]. 国防科技, 2016, 37(6).[5]国元证券.电子行业研究报告:存储芯片投资地图.[6]方正证券.汽车半导体系列专题报告——电车之忆:汽车存储芯片分布[7]Mahendra Pakala. AI时代推动存储器的创新与发展[J]. 中国电子商情(基础电子), 2019(10).

汽车 OTA 之一二三四五

*本文经授权转载自新浪微博用户@冷酷的冬瓜的头条文章,作者冷酷的冬瓜,转载请联系本人。

让天底下没有...难懂的汽车 OTA。

一、OTA 的过往

略...原本计划写一写的,后来一想还是算了,还要查资料,麻烦的一匹...从手机到汽车嘛,大家也都知道个大概。解释几个名词吧:

OTA,Over The Air/空中下载,所谓“空中”指的是远程无线方式,指通过移动通信(GSM或CDMA)的空中接口对 SIM 卡数据及应用进行远程管理,OTA 技术可以理解为一种远程无线升级技术[1];FOTA,Firmware Over The Air/固件空中升级,指通过云端升级技术,为具有连网功能的设备:例如手机、平板电脑、便携式媒体播放器、移动互联网设备等提供固件升级服务;刷过手机的朋友们应该对“固件版本”印象深刻,手机中的固件升级即可称为 FOTA;SOTA,Software Over The Air/软件空中升级,偏向于应用软件升级。

事实上 FOTA 与 SOTA 界限比较模糊,Windows 操作系统升级、手机升级、嵌入式系统、单片机控制程序等都的远程升级可以笼统地称为 FOTA;转移到汽车电子这块,为了方便讨论,我们将 HU 中的 APP 更新称为 SOTA,将其他 ECU 的更新甚至于所有更新统称为 OTA。

二、汽车 OTA 的先锋

这个地方我要提名特斯拉,应该...没人反对吧(仅仅升级车机的就不要说了...)?直接附上我在 18 年初整理的 Tesla Firmware Upgrade changelog from 2012.9~2017.3[2]:

图一 Tesla Firmware Upgrade changelog from 2012.9~2017.3

从第一款 Model S 上市开始,截止到 17 年 3 月份的 5 年时间里,Tesla 总计推送 25 次 OTA 升级(不含小版本)。 涉及各大功能域、至少 22 个控制器(根据常规架构推测)。 在这其中: 中控屏 21/25,更新内容囊括 bug 更新/显示/报警/交互/控制设置等方面,几乎每次更新都会涉及; 动力及电池系统相关的 11/25,包括能量管理/热管理/性能优化/车载充电等方面; 座舱系统相关的 10/25,包括雨刮/座椅/PE/门把手/鸥翼门等方面。

图二 特斯拉历年不同系统推送更新占比

更进一步地,若将“电池主正继电器、主负按照时序断开,而非同时断开”归为“缺陷修复”、将“基于位置的智能空气悬架”归为“新功能推送”、将“地图显示模式调节”归为“交互界面优化”,在总数为 128 项中,“缺陷修复”数量为 11,“新功能推送”数量为 56,“交互界面优化”数量为 61。

图三 特斯拉历年OTA目标分类汇总饼图

...挑1项更新“天窗的舒适开启的位置由 80% 变更为 75%”简单说下实施前提:

天窗控制器能够实现任意位置的远程开启指令;支持更新的控制器具备天窗的任意位置的接口权限。

此项更新为 2014 年 6 月推送,彼时常见设计为本地开关控制舒适开启,且该位置点较难改变。特斯拉超前、激进的设计理念以及创新的烙印可见一斑。

三、由汽车电子电气架构的发展趋势看汽车 OTA 的核心价值

事实上,大家看到这里对汽车 OTA 的主要目的可能有了初步的认识?大致上就是上一小节中饼图中所展示的 3 点:缺陷修复、新功能推送以及交互界面优化。不过在这一小节中我还是想从汽车电子电气架构发展趋势层面将汽车 OTA 说的更透彻些[3]。

先来看下趋势~

软件定义汽车(Software Defined Vehicles,简称SDV)将成为汽车行业普遍的发展趋势,其核心思想是:决定未来汽车的是以人工智能为核心的软件技术,而不再是汽车的马力大小、是否真皮座椅、机械性能好坏[4];高端汽车控制器节点 80~100,整车代码量已经突破 1 亿行[5]。而汽车行业80%~90% 的创新基于电子,离不开软件的支撑,还在不断发展[6];汽车电子的创新水平最终会向IT及传统消费电子看齐[7]。

再来看下汽车 OTA 的核心价值~

潜在问题改善。不断攀升的代码量即使按照 CMMI(capability maturity Model integration,能力成熟度集成模型)5 级的最高软件标准进行控制,代码缺陷率仍为 0.32‰,潜在问题的规模不容小觑[4];OTA 可有效解决软件故障, 通过应急响应降低开发周期短带来的软件风险问题,以及完成对信息安全漏洞的修复;全新功能导入。通过 FOTA 的功能进行新功能新特性的导入,让客户有常用常新的感觉,能够提升汽车使用的用户友好度;进行界面优化更新,提升人机交互体验。汽车连接互联网,改变了过去销售是研发过程结束的汽车销售模式,使销售成为厂商与客户互动的开始,因此会带来投诉率高的风险。而是用界面和内容的更新可以从一定程度上降低投诉率。

四、汽车OTA的典型架构

图四 汽车 OTA 更新流概览

上图展示车辆内从主机厂服务器更新程序到指定 ECU 的过程中的主要部件。 首先通过蜂窝网络建立车辆与服务器之间的安全连接,确保全新的,待更新的固件安全地传输到车辆的 Telematics Unit,然后再传输给 OTA Manager。 OTA Manager 管理车辆所有 ECU 的更新过程。它控制着将固件更新分发到 ECU,并告知 ECU 何时执行更新 - 在多个 ECUs 需要同时更新的情况下尤为重要 - 例如推送一项新功能,而该新功能涉及多个 ECUs。更新过程完成后,OTA Manager 将向服务器发送确认。

针对 OTA Manager 它可能需要外挂 NAND flash 用来存储固件包,同样也可以用来存储其他车辆 ECUs 的备份,以期在 ECU 升级失败之后进行调用。这些备份应该通过加密&认证的方式进行防护避免外部攻击。

OTA Manager 内部有一个表格,包含各个车辆 ECU 的相关信息,譬如 SN 号以及当前的固件版本。这样便于 OTA Manager 核实接收到的固件升级包并确保是通过授权的。如果是正在更新的 ECU 不具备加密能力那么 OTA Manager 同样需要负责更新过程的解码及验签[8]。

从上图不难看出 OTA Manager 的重要性,也正是基于此,并结合网关的安全性、隔离性以及天然的多连接属性,部分主机厂启动自研网关(集成 OTA Manager 角色),譬如蔚来、FF。

五、汽车 OTA 的挑战

尽管汽车 OTA 使用的技术,包括 Telematics 以及通信技术都已成熟,汽车 OTA 却并没有想象中的普及?主要有两个大的挑战[5]:一个是安全的考量;将车辆的嵌入式系统重编程的接口开放,使其更容易受到黑客攻击。...是的,我又要说起特斯拉了...还有科恩实验室。

腾讯科恩实验室(Keen Security Lab of Tencent)连续两年,分别在 2016 年 9 月、2017 年 7 月实现了针对特斯拉 Model X 系统的破解,而从科恩实验室 2017 年的报道中我们发现特斯拉在 2016 年加入了“代码签名”安全机制,并对所有 FOTA 升级固件进行强制完整性校验[9] - 而这两个举措放在现在则是安全机制的标配了,可以说后发者站在前人的肩膀上。

图五 腾讯科恩实验室 - 2017,再一次实现对特斯拉的无物理接触远程攻击

也正是因为特斯拉趟过的坑能够让后来者一上来就重视安全的方案设计。

针对汽车 OTA 的安全性,主要可以从以下两个方面做一个简要分析:

信息安全;主要是通信加密、软件包验签、更新隔离以及安全芯片等;功能安全;主要包括 OTA Manager 的启动条件判断(车辆状态等)、ECU 升级的预编程条件判断、整车模式配合以及升级方案考量(A/B 法等)。

BTW,针对 2017 年的漏洞,特斯拉在两周之内修补了这些漏洞[10]。

图六 特斯拉在两周之内修补了漏洞

二个是汽车产品线中的大量变体和配置使得难以为典型 EEA(Electronic and Electrical Architecture,电子电气架构)内的所有现有组合提供安全且一致的更新。包括不同地区、跨版本之间的兼容性等。

其他的还有诸如 roll back 机制、推送/升级的策略等,前期设计是一方面,实际运营过程中积累的 know how 更是至关重要。

汽车 OTA 不是什么洪水猛兽,也不是什么阳春白雪;它就是它,能够为消费者、主机厂带来共同收益的一项服务;是新趋势,也是新挑战,希望能够在看得到-看得起-看得懂-追得上的过程中享受其价值。

相关问答

ecarflash编程器怎么用?

使用Ecarflash编程器时,首先需要将编程器连接到电脑上,并安装相关的驱动程序和软件。然后,将编程器与车辆的OBD接口连接,并根据软件的指导选择相应的车型和...

汽车刷 ecu 影响保修吗?

[最佳回答]不会,ECU一般都有故障自诊断和保护功能。当系统出现故障时,故障码可自动记录在RAM中,并采取保护措施从上述固有程序中读取替换程序,维持发动机运转...

如何应对汽车刷 ecu 年审?

[最佳回答]如果汽车ECU只刷首单,也就是只刷ECU数据,不会改变排气、三元(查成交价|参配|优惠政策)催化器等硬件的原始状态,年检也没问题。但是如果刷第二步,换...

pcmflash120和121区别?

PCMflash120和121是汽车诊断工具,主要用于汽车ECU(发动机控制单元)的刷写和读取操作。它们的区别如下:1.软件功能:PCMflash120和121使用的软件版本有所不同...

汽车刷 ecu 年检怎么办_车坛

汽车刷ecu是不会影响年检的:1、ECU的电压工作范围一般在6.5-16V(内部关键处有稳压装置)、工作电流在0.015-0.1A、工作温度在-40℃~80℃;2、因此ECU...

ecu 可以过年审的吗_车坛

刷ECU不会影响年检:1、ECU的电压工作范围一般在6.5-16V(内部关键处有稳压装置)、工作电流在0.015-0.1A、工作温度在-40℃~80℃;2、因此ECU损坏的概...

ecu 会影响年检?

[最佳回答]关于“刷ecu会影响年检?”有以下相关内容介绍:刷ECU不会影响年检:1、ECU的电压工作范围一般在6.5-16V(内部关键处有稳压装置)、工作电流在0.015-0...

什么是汽车电脑编程 - 汽车维修技术网

[回答]及功能的增加,一个控制模块用于一个功能的设计已变得笨拙和浪费。这就要求有一种新型的电气系统。这种新的电气系统使用分配式功能、控制...这就要...

斯巴鲁森林人二次空气泵故障

[回答]故厅辩型障灯亮,最灶兄佳处理您好亲,方法一共有三种1.每次清洗节气门的时候,顺带拆下两个二次进气阀,然后将阀拆开,用一罐化油器清洗剂去...只要保...

整车断电,断油!怎么办?

ECU接收到T15下电指令后,先断油,完了会将本次运行期间自学习的一些参数存储到Flash中,存储完毕,ECU才会下电。ECU接收到T15下电指令后,先断油,完了会将本次运...

 终结孤单  拉卡拉手机刷卡器 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部