行情
HOME
行情
正文内容
nand命令作用 3D NAND的层数有限制吗?
发布时间 : 2025-03-10
作者 : 小编
访问数量 : 23
扫码分享至微信

3D NAND的层数有限制吗?

内存供应商正在竞相为 3D NAND 添加更多层,数据爆炸以及对更大容量固态驱动器和更快访问时间的需求推动了3D NAND市场的竞争。

美光已经在完成 232 层 NAND 的订单,而且不甘示弱,SK 海力士宣布将于明年上半年开始量产 238 层 512Gb 三层单元 (TLC) 4D NAND。或许更重要的是,芯片制造商私下表示,他们将利用行业学习为目前正在开发的 3D-IC 堆叠 NAND。

西门子 EDA技术产品经理 Ben Whitehead 表示:“处理器的摩尔定律在过去几年中可以说一直滞后,但对于 NAND 闪存来说,摩尔定律仍然存在并且很好 。” “这是一件好事,因为现代计算和网络对快速存储有着无法满足的需求。”

SK 海力士于 2018 年推出了 96 层 NAND 的 4D 命名法。尽管有这个名字,但该公司并未在四维空间中创建其产品或模仿 tesseract 立方体。但这个词也不完全是营销噱头,它是 3D 架构变体的商品名。

“对于 DRAM,大约需要 10 或 15 年的研发才能取得成果,但对于 3D NAND,发展速度非常快。当你想到通常的开发速度时,你会感到惊讶,”新思科技研发总监林西伟说。“除了技术本身,它还是一款杀手级应用。苹果是第一个放入闪存来存储数据的。今天,我们买 iPhone 还是看内存有多少,而且都是闪存。从那里开始,大数据、人工智能和分析需要高性能计算。闪存正在填补硬盘驱动器和 RAM 内存之间的这一关键延迟差距。由于功耗、外形尺寸和密度成本,你可以看到应用程序,尤其是在数据中心、分析和游戏领域。”

演变与革命

回顾 2D NAND,它具有平面架构,浮栅 (FG) 和外围电路彼此相邻。2007 年,随着 2D NAND 达到其规模极限,东芝提出了 3D NAND 结构。

三星在 2013 年率先推出了其所谓的“V-NAND”。

3D 设计引入了多晶硅和二氧化硅的交替层,并将浮栅交换为电荷陷阱闪存 (CTF)。这些区别既有技术上的,也有经济上的。FG 将存储器存储在导电层中,而 CTF 将电荷“捕获”在电介质层中。由于制造成本降低,CTF 设计很快成为首选,但肯定不是唯一的。

IBM 研究员 Roman Pletka 指出:“尽管所有制造商都转向电荷陷阱单元架构,但我预计传统的浮栅单元在未来仍将发挥不可忽视的作用,尤其是对于容量或保留敏感的用例。”

海力士表示,尽管有摩天大楼式堆叠的创新,但第一代 3D NAND 设计将外围电路保留在一边。

最终,3D NAND 供应商将外围电路移至 CTF 之下。在 SK 海力士的术语中,它现在是 Periphery Under Cell (PUC) 层。一方面,说“4D NAND”比 CTF/PUC NAND 更短更酷。另一方面,最终这是 3D NAND 的另一种变体,每单位的单元面积更小。用于更小尺寸的类似设计有不同的商品名称,例如美光的 CMOS under Array (CuA)。

图 1:SK 海力士对 4D NAND 的解释。

来源:SK 海力士全球新闻编辑室。

图 2:外围电路是 4D NAND 的底层。

来源:SK 海力士全球新闻编辑室。

美光本身在 2022 年 7 月下旬宣布了 232 层 NAND,该产品正在生产中,从而获得了宣传的权利。根据该公司的新闻稿,美光表示,其 232 层 NAND 是存储创新的分水岭,首次证明了在生产中将 3D NAND 扩展到 200 层以上的能力。

“添加这些层的主要作用是增加容量,因为每个人都在寻找更多的 SSD 容量,”Cadence产品营销集团总监 Marc Greenberg 说。“因此,添加更多层基本上意味着可以在单一封装中存储更多千兆字节,并在单一类型的多层 3D NAND 组件上进行存储。添加所有这些层及其背后的技术是一种容量游戏。”

美光还声称拥有业界最快的 NAND I/O 速度 2.4 Gbps,与上一代相比,写入带宽提高了 100%,每个芯片的读取带宽提高了 75% 以上。此外,232 层 NAND 包含六平面 TLC 生产 NAND,美光表示这是所有 TLC 闪存中每个芯片最多的平面,并且能够在每个平面上独立读取能力。

据行业分析师称,这可能是该公告中最令人印象深刻的部分。由于有六个平面,这个芯片可以表现得好像它是六个不同的芯片。

图 3:美光的 232 层 NAND。来源:美光

中国的公司在232 层 3D NAND 模块好像也有进展。

制造:优势与挑战

在去年的 IEEE IEDM 论坛上,三星的 Kinam Kim 发表了一个主题演讲,他预测到 2030 年将有 1000 层闪存。这听起来可能令人头晕目眩,但这并不是完全的科幻小说。“与 NAND 闪存的历史趋势线相比,这已经放缓了,”imec 存储存储器项目总监 Maarten Rosmeulen 说。“如果你看看其他公司,比如美光或西部数据,他们在公开声明中提出的内容,他们甚至比这还要慢。不同的制造商之间也存在一些差异——似乎他们正在延长路线图,让它放慢速度。我们相信这是因为保持空间运转需要非常高的投资。”

尽管如此,竞争风险仍然足够高,以至于这些投资是不可避免的。“主要的前进方向,主要的乘数,是向堆栈添加更多的层,”Rosmeulen 说。“进行 XY 缩小和缩小内存孔的空间非常小。这很难做到。也许他们会在这里或那里挤压几个百分点,把孔放在一起,孔之间的缝隙更少,诸如此类。但这并不是最大的收获。如果你能继续堆叠更多的层,密度只能以目前的速度显著提高。”

图 4:NAND 制造中的 3D 步骤。来源:客观分析

进一步堆叠似乎是合理的,除了整个过程的核心不可避免的问题。

“主要挑战在于蚀刻,因为必须蚀刻具有非常高纵横比的非常深的孔,”Rosmeulen 说。“如果你看看上一代有 128 层,这是一个大约 6、7 或 8 微米深的孔,只有大约 120 纳米的直径,极高的纵横比。蚀刻技术有进步,可以一次性蚀刻更深的孔,但不会更快。您无法提高蚀刻速度。因此,如果工艺流程以沉积和蚀刻为主,而这些工艺步骤并没有提高成本效率,那么添加更多层对于降低成本不再有效。”

蚀刻也只是多个步骤之一。“除了蚀刻之外,你还需要用非常薄的介电层上下均匀地填充这个孔,”Synopsys 的 Lin 说。“通常情况下,由于晶圆的化学性质,沉积几纳米的层并不容易。在这里,他们必须一路向下才能填满。有亚原子层沉积方法,但它仍然具有挑战性。另一个大挑战是压力。如果你建立了如此多的层,这些层会经历一些蚀刻/沉积/清洁/热循环,这可能会导致局部和全局压力。在局部,因为在钻孔后,需要在整个堆栈中切出一个非常深的沟槽。它变成了一个非常高的摩天大楼,摇摇欲坠。如果开始进行一些洗涤或其他过程,很多事情都可能导致两座摩天大楼相互倒塌。那么就失去了收益。并且通过将如此多的材料相互叠放并切割不同的图案,这会产生全局应力并导致晶圆翘曲,这将导致晶圆厂无法处理,因为晶圆必须是平的。”

值得注意的是,蚀刻正在穿过不同材料的层。

Objective Analysis 的 Handy 表示,三星的解决方案是创建极薄的层。“这对整个行业很有用,因为每个人都使用几乎相同的工具来创造这些东西。”

让它更好地工作

闪存的基本概念也存在固有的功能挑战。“人们越来越依赖需要越来越强大的纠错算法来与这些设备一起工作,”Cadence 的 Greenberg 说。

问题是 NAND 闪存设备内置的智能并不多。“通常情况下,SSD 发生在控制器端,”Greenberg 解释说。“控制器正在向 NAND 闪存设备发送命令,NAND 闪存设备会做出响应,但它并没有太多的智能。它只是响应请求,例如针对特定地址的数据块。NAND 闪存设备将简单地响应该数据块。但是在控制器端,你必须首先对接收到的数据进行纠错,然后确定该块中是否存在不可接受的错误数量,然后决定如何重新映射该块地址空间并在其位置放置一个不同的块。所有这些决定都发生在控制器端。”

尽管如此,由纳米级摩天大楼建造的世界重新强调了 ONFI 控制器和 ONFI PHYS 等组件,并为设计人员提出了新的挑战。

“内存工厂可以生产的层数使与这些内存接口的控制器的设计验证问题变得非常复杂——而且它们可能并不那么明显。SSD 控制器必须处理更多的内存通道。将许多管道与越来越快(但永远不够快)的主机接口连接起来会在非常意想不到的地方产生瓶颈,”西门子的 Whitehead 说。“另一个设计验证挑战是功率。长期以来,大多数存储控制器的优先级较低,但现在已转变为关键功能。移动到较小的几何节点会有所帮助,但代价高昂。商业模式不能容忍重新旋转,更不用说供应链难以排长队了。上市时间的延迟让高层管理人员非常清楚。存储的增长动力甚至更多,这需要我们重新思考如何验证设计。AI 加速器需要更大的存储控制器,这可能会很快消耗您的仿真和原型设计能力。边缘智能需要数量级更复杂的设计验证。内存计算,如 CSD,需要测试新的处理器组合,将 RTOS 和 HTOS 与以前看不见的工作负载混合在一起。”

这是人们如此关注验证 IP 的原因之一。

西门子数字工业软件公司的 ICVS 产品经理 Joe Hupcey 表示:“使用此 IP 的自动化可以快速生成测试平台,让设计和验证团队在几分钟内启动并运行。” “这种生产力水平使我们能够对整个设计进行架构探索,从而尽早对所选择的权衡取舍充满信心。同时,它还建立了自动跟踪指标的框架——如代码、功能和场景覆盖率,使团队能够衡量他们的进度并拥有做出签核决定所需的数据。最后,基于我们在 CXL/PCIe 协议方面的专业知识,我们看到通用芯片互连快速 (UCIe) 等新兴标准在使团队能够协作以快速设计和验证这些大规模可扩展内存模块方面发挥着关键作用。”

此外,Imec 正在探索 3D NAND 的潜在新结构。它展示了所谓的“沟槽架构”,这是一种设计变体,其中存储单元是沟槽侧壁的一部分,两个晶体管位于沟槽的相对两端。Imec 铁电体项目总监 Jan Van Houdt 解释了它的价值:“与目前使用的环栅(或圆柱形)架构相比,3D 沟槽架构具有双倍密度的潜力。”

然而,他接着指出了一些缺点。“有两个高纵横比(=具有挑战性的)蚀刻步骤而不是一个,以及在闪光情况下隧道氧化物中的电场较低。第二个缺点在使用铁电 FET 时不存在,这使得沟槽版本对铁比对闪存更有吸引力。”该设计仍处于原型阶段。

结论

2016 年,专家指出,由于技术问题,3D NAND 可能会在 300 层或接近 300 层时失去动力。这似乎已被今天的谨慎乐观所取代。

“在 SK海力士的 238 层之后我预计未来几年层数将以大致相同的速度增加,”IBM 的 Pletka 说。“然而,从技术角度来看,由于高纵横比蚀刻工艺,增加层数受到挑战,而且资本支出也受到挑战,因为制造芯片的时间随着层数的增加而增加。这就是为什么我们将通过制作更薄的层、横向缩放(例如更密集地放置垂直孔)以及使用更有效的布局(例如共享位线和逻辑缩放)来看到新的缩放方向(例如,使用拆分门架构或存储更多每个单元的位数)。有了这些技术,预计 NAND 闪存的存储密度至少在未来 5 到 10 年内会以类似的速度增长。”

“当人们说我们不能超过这个层数时,没有物理限制,”Objective Analysis 的首席分析师 Jim Handy 说。“在半导体领域,总是有人说我们做不到。我们不能在 20 纳米以下进行光刻。现在,他们正在研究 1 纳米。三星谈到了 1000 层。”

*声明:本文系原作者创作。文章内容系其个人观点,我方转载仅为分享与讨论,不代表我方赞成或认同,如有异议,请联系后台。

串行NAND在汽车电子领域的应用

NOR Flash多年来一直作为汽车的一种可靠技术,如今已应用于各种汽车系统,包括仪表集群、信息娱乐和远程信息系统。

在这些应用程序中,这种非易失性内存为应用程序代码提供了存储容量,提供了可靠的操作和足够快的读取速度来支持实时执行(Execute-in-Place, XiP),即主机处理器直接从Flash运行代码,绕过外部DRAM。

NOR Flash在ADAS概念的新兴实现中也扮演着重要角色,ADAS概念在现有的汽车中已经实现了半自治的高速公路驾驶功能,如自适应巡航控制和车道保持。自动驾驶技术的发展速度非常快,因此在未来几年里,越来越多的汽车程序将由包含Flash的电子系统控制。

在ADAS,以及仪表集群和其他地方,Flash是安全关键系统中的一个组件:这样一个系统的任何不受控制的故障都有可能使车辆变得不安全或无法控制。为管理及减低系统未能按指定操作的风险,汽车业界已实施ISO26262功能安全标准,其中包括:

在设计阶段强制要求对系统设计功能失效的方式进行严格分析

为整个系统指定非常低的最大故障率

要求系统可靠、快速地检测功能故障

要求系统采用可靠的方法安全生存,并从任何可预见的功能故障中恢复

因此,汽车系统原始设备制造商开始要求开发一种新的Flash集成电路,这种电路能够比前几代设备更好地支持系统级的功能安全设计要求。本文研究了传统的Flash集成电路的工作模式,并说明了新汽车串行Flash产品如果要完全支持系统设计者遵守ISO26262标准的努力,将需要提供的特征。

这些功能性的安全特性很可能在串行或闪存(目前在嵌入式系统中用于引导代码存储的闪存类型)和单级Cell (SLC) NAND闪存中都可以看到。实际上,对于不需要很高的程序/擦除周期,也不需要实现XiP的应用程序中的代码存储,串行NAND是NOR Flash的有效替代方案。华邦电子(华邦电子)的SLC NAND技术采用46nm工艺制造,该工艺已被证明是高质量,在功能性安全应用方面优于采用新的、更小的几何形状制造的系列NAND产品。它还提供的数据保留期可与55-65nm或闪存相媲美。

串行NAND的优势在于其固有的低成本——一个NAND闪存单元比NOR闪存单元小四倍。与NOR Flash相比,NAND Flash的写入时间要短得多,因此在执行无线(OTA)软件更新的系统中,它是一项有价值的技术。由华邦电子提供的车载纠错码(ECC)引擎和支持跨页面和块边界的高速连续/顺序读取能力,串行NAND现在正被汽车功能安全应用程序的设计者纳入考虑范围。

诊断数据的重要性

需要说明的是,NOR闪存技术非常可靠,而且设备的运行寿命是可预测的。而Flash集成电路没有在该领域证明自己的品质,汽车原始设备制造商对这项技术的偏爱是基于其在当今道路上数百万辆汽车上的使用经验。ISO 26262标准规定了四个“ASIL”等级(汽车安全完整性等级)的可靠性和其他参数。最严格的等级ASIL-D适用于最安全关键的系统,如转向系统或刹车系统,它将系统级的最大故障率设置为<10 FIT(在时间上的故障),即每十亿个设备小时的故障率。

单点和潜在故障的最低检出率,以及ISO 26262标准规定的最大故障率

尽管如此,汽车制造商为遵循ISO 26262的合规性,要求找到一种方法来识别NOR闪存IC理论上仍然可能发生的任何故障。在传统设备中,用户无法获得维持数据完整性和数据保留的功能。这种封闭操作与功能安全原则相冲突,功能安全原则要求主机系统监视部件的故障,或监视表明可能发生故障的不正常行为,并执行旨在保持正常功能的应对措施。

这意味着NOR Flash IC在ISO 26262兼容系统中使用时,必须向主机控制器提供诊断数据,并提供主机修改IC操作的方法,以应对数据显示的更高的故障风险。

NOR Flash IC的两个主要特性提供了这些数据:

ECC引擎,它通过检测和纠正读操作中的位错误来维护数据的完整性

允许对ECC引擎的运行进行定期测试的用户模式

ECC数据如何支持功能性安全操作

在传统的NOR Flash IC中,ECC引擎在后台运行,以多字节粒度检测和纠正位错误,不通知主机控制器。然而,事实上,这些ECC[1]数据可以以各种方式促进功能性安全合规。ECC引擎能够纠正单位错误(当主数据位和奇偶校验位之间只有单位差异时);检测(但不纠正)双位错误。

通过向主机控制器提供状态寄存器,NOR闪存设备可以指示最近的读操作是否有三种可能的结果之一:

1.良好的数据,不需要纠错

2.修正错误后的良好数据

3.无法纠正的错误数据

这些“事后”信息可用于帮助维护长期的数据完整性。但ISO 26262要求汽车系统在出现故障时进行检测,并立即采取相应措施。来自华邦电子的新型自动NOR Flash IC,可通过专用错误引脚提供实时错误信息。此引脚可以被断言,以指示无法纠正的数据的确切位置。用户还可以选择错误pin是表示纠正的单比特错误,还是表示检测到的不可纠正的双比特错误。

然后,主机可以使用来自状态寄存器、错误pin或两者的信息来构建错误寄存器——实际上是NOR Flash阵列的“映射”,记录位错误的位置。然后,主机可以设置一个阈值,以便当某个位置(例如某个特定块)发生的错误数量超过这个阈值时,该位置就从内存中“退休”了。

识别潜在故障的方法

到目前为止,上述所描述的措施是关于单点故障处理,ISO 26262标准为每个ASIL等级指定了最低检出率。但该标准还要求汽车系统检测“潜在故障”。潜在故障本身并没有违反功能安全要求,但是它可以与第二个故障一起违反这些要求。

在NOR Flash IC中,存在潜在的潜在故障- ECC引擎故障就是一个例子。正常运行时,NOR Flash技术可靠性高,很少需要纠错。因此,只要ECC引擎故障不会导致它错误地纠正好位,故障通常不会引起注意。但是,当由于ECC引擎故障(一个潜在的故障)导致单个坏位未得到纠正时,这两个故障的组合将对功能安全构成风险。

为了检测潜在的ECC引擎故障,华邦电子的automotive NOR Flash IC提供了特殊用户模式和ECC编码器读取命令:这使用户能够将主数据模式注入到内存中,并从ECC引擎中读取主数据和它生成的奇偶校验数据。如果奇偶校验数据不正确,可以将ECC引擎标记为错误。

同样,用户模式可用于检查ECC解码操作:在用户模式下,用户将主数据和奇偶校验数据加载到ECC引擎中,并使用特殊的ECC解码器Read命令将主数据读回。在主数据和奇偶校验数据中可能会引入单位和双位错误,检查ECC引擎是否正确执行单位错误校正和双位错误检测。华邦电子的建议是,每次系统启动时都应该执行ECC引擎检查。

新的安全功能可用于生产部件

为了满足ADAS产品和其他汽车系统制造商的需求,华邦电子现在正在将上述功能安全特性集成到一个新汽车NOR Flash系列产品中。Quad 3V系列具有最大80MB/s的数据传输速率,可用于256mbit和512mbit密度的采样。1Gbit 3V部件(两个堆叠的512Mbit模具)将在2020年下半年面世。

华邦电子还将在2020年提供高密度(512Mbit和1Gbit) 1.8V的NOR闪存设备,部分设备将有四进制或八进制接口。

串行NAND具有快速的OTA更新写入时间

华邦电子还提供了一系列具有功能性安全特性的NAND产品:3V和1.8V产品均可用于512Mbits和1Gbit采样密度,以及由两个堆叠的1Gbit模具组成的2Gbit部件。华邦电子的第一代串行NAND系列提供的最大吞吐率为40MB/s(在1.8V部件中),在3V部件中为52MB/s。第二代NAND系列产品W25N01JW/W25N02JW产品在1.8V部分提供了更高的80MB/s吞吐量。这是在Quad DTR(数据传输速率)模式下实现的,并且是连续的数据输出,在页面和块边界上没有间隙。华邦电子最近还推出了W35N01JW,这是一款1Gbit的1.8V八进制NAND闪存设备,读取速度为240MB/s,比W25N01JW快三倍。

华邦电子系列NAND产品,如1Gbit 3V W25N01GV,通过向状态寄存器提供信息来支持功能性安全合规性,该状态寄存器显示在有无ECC的情况下读出的数据是否正确或者是否不可纠正。串行NAND页面大小为2kbytes,在扇区级别提供1-bit嵌入式ECC(512字节)。这意味着在2kbyte页面上最多可以执行4-bit的校正。华邦电子串行NAND还提供了在用户命令提示时读取失败页面位置的功能。

通过为功能性安全应用程序提供SPI NOR和串行NAND解决方案,华邦电子为用户提供了根据其设计要求选择适当的闪存类型的自由。

[1] ECC是“Error Correcting Code”的简写,ECC是一种能够实现“错误检查和纠正”的技术,ECC内存就是应用了这种技术的内存,一般多应用在服务器及图形工作站上,可提高计算机运行的稳定性和增加可靠性。

相关问答

飞凌开发板6410uboot什么 命令 擦除nandflash啊?

sferase+起始地址+擦查长度在uboot下输入help可以查看所有的命令sferase+起始地址+擦查长度在uboot下输入help可以查看所有的命令

cpu的spl是什么?

SPL是uboot第一阶段执行的代码.主要负责搬移uboot第二阶段的代码到内存中运行.SPL是由固化在芯片内部的ROM引导的.我们知道很多芯片厂商固化的ROM支持从nan...

NorFlash和NandFlash有哪些相同和不同?

NorFlash和NandFlash的相同点在于它们都是一种存储芯片,可以用于储存各种数据,如程序、图片、音乐等。不同点在于它们的结构不同,数据传输方式也不同。NorFlas...

CAD中trim 命令 怎么用?

修剪Trim的字面意思是修剪、整理。Trim指令的作用就是在电脑删除文件的时候,额外通过它直接通知到固态硬盘,具体哪些地址的数据已经被删除、可以从闪存当中清...

nand write start什么意思-ZOL问答

没有这个命令,*和?是通配符,不过我还没听说过在ms-dos下的命令支持通配符。你后面加一个exe那是可执行文件不是命令,你玩我吗?有用(0)回复没有-d这个命令...

固态硬盘读取和写入的速度哪个更重要 - 09cAfrW0D1I 的回答 -...

当然是读取重要。因为固态硬盘一般在重装系统和软件时才写入,平时都是读取,读写的比例是是100:1,写的速度没啥用。除非你拿它当移动硬盘。固态硬盘...

国产芯片发展到什么水平了?

芯片制造的差距并不是单个方面,它是工艺的各个方面。许多智能手机或电脑都是中国制造,但是装有的中国“芯”却寥寥无几。以前国家对微电子的重视程度是不够的...

SSD固态硬盘的trim是什么?苹果电脑Mac OS X不支持trim? - 红...

在)。”这里要注意一点:硬盘本身是不知道当前数据的状态的,他只是被控制着做这做那。上面这一套在普通的机械硬盘上工作起来非常完美,因...”...

固态硬盘读取和写入的速度哪个更重要 - agWhtSba 的回答 - 懂得

对于普通的人群来说基本上读取速度优先。开机读开程序读运行程序读下载写上网又读又写当然是读取重要。因为固态硬盘一般在重装系统和软件时...

SSD固态硬盘需要进行碎片整理吗?为什么?

可能很多人已经遗忘了windows自带的磁盘碎片管理程序。这个程序已经在windows中存在了很多年,笔者刚开始接触电脑时用的win98上就自带这个工具。那时玩电脑还是...

 释永福  窝窝团网 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2025  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部