新增NAND写入算法:跳过坏块并重建坏块表
宝剑锋从磨砺出,梅花香自苦寒来;
博观而约取,厚积而薄发。
有心的小伙伴可能在最新的软件版本里会看到,写入NAND时增加了一个新的算法:跳过坏块并重建坏块表 。
以海信5079板,MSD6A801芯片方案为例,先给大家演示RT809H写入NAND新算法。
先找一片坏块较多的Nand芯片,按方向放入RT809H编程器,锁好锁紧座。
点智能识别,选择NAND Falsh,稍等会自动识别到相同ID的芯片型号。
识别出两个芯片型号,选择跟芯片型号一致的K9K8G08U0D@TSOP48。
我们先点一下坏块检测,看看此芯片的坏块分布(坏块检测会破坏NAND芯片内数据,谨慎使用)。
检测到23个坏块,严格来说,基本算是残次品。
点设置,出现三个选项,硬拷贝;跳过坏块并重组数据;跳过坏块并重建坏块表。此板请选择“跳过坏块并重建坏块表 ”。
点写入,选择备份文件,开始自动写入。
可以看到界面上已经显示算法为“跳过坏块并重建坏块表”。
开始写入,耐心等待。。。
写入完成,接下来对写入后的NAND芯片进行验证,先把NAND芯片装回电视板卡。
连接上串口,同时监控打印信息。
通电,看到正常进入系统。同时监控显示画面,直到启动完成。
操作遥控,各项功能正常!
由于NAND使用领域的多样性和NAND自身的特殊性,坏块管理都不尽相同,就拿电视主板来说,我们通过大量板卡测试,和大量时间做了深入研究,发现不同的电视厂家,使用的坏块管理算法都不同,我们特此汇总了三种不同的算法,经过测试已经解决了目前在中国能够见到的电视主板NAND写入问题 。
NAND_AUTO读写芯片时,符合ONFI标准的芯片,读写成功率较高,比如海力士、镁光、ST、华邦等,而三星、东芝等厂商未加入此标准化组织,所以有可能参数识别错误导致读写后不能用,请提交NAND_AUTO读取得到的ID给我们,添加对应的芯片型号即可解决问题 。
国外用户如果遇到NAND读写问题,请提供好的板卡给我们测试。
没有哪种算法可以解决所有NAND复制问题,只能是遇到问题再研究新算法来解决问题。iFix爱修一直致力于为维修行业解决难题。
最近发现大家都在问一个比较实际的问题:RT809H以后会不会想其他编程器厂家一样,相同封装、不同型号的NAND芯片,使用不同的转接座?转接座的写入次数是多少?
这里是正式回答:RT809H编程器写入所有TSOP48封装的NAND芯片,只需要TSOP48通用座就可以了,永远不会限制写入次数!
视频演示,腾讯视频网址: https://v.qq.com/x/page/h0737szc7xu.html
学习课程已更新,欢迎大家进入学习。
入口:公众号首页-精选-案例直播;
目前课程观看已使用专属APP,
支持苹果、安卓手机以及电脑,
微信授权登录即可,
详见微信及QQ通知。
4D闪存+176层,SK Hynix做到了
继美光之后,SK海力士宣布完成了业内首款多堆栈176层4D闪存的研发,容量512GB/64GB,TLC。SK海力士透露,闪存单元架构为CTF(电荷捕获),同时集成了PUC技术。公司将样品提供给controller公司去制作解决方案产品
海力士一直在推广96层NAND Flash产品中的4D技术,该产品将电荷阱闪存(CTF)与高集成度Peri相结合,并采用单元(PUC)技术。新的176层NAND闪存是第三代4D产品,从制造上来说,其能够确保业内最佳的每片晶圆产出。与上一代相比,除了容量增加35%,它采用2分裂单元阵列选择技术后,单元的读取速度比上一代提高了20%,在不增加进程数量的情况下,采用加速技术的数据传输速度也提高了33%,达到1.6Gbps。
对于移动解决方案产品,最大读取速提高了70%,最大写入速提高了35%,SK海力士计划在明年年中发布消费者和企业SSD,从而扩大产品的应用市场。
从技术层面来讲,NAND闪存层数的增加,会导致电池电流减少,沟道孔扭曲,以及由于双叠层未对准而引起的单元分布恶化。SK海力士通过采用创新技术,如单元层间高度降低、层变量定时控制和超精密对准,克服了这些挑战,并开发了行业顶级176层NAND闪存。
SK海力士还计划通过在176层4D NAND的基础上开发双倍密度的1Tb产品,以不断增强其在NAND闪存业务上的竞争力。
根据市场情报提供商Omdia的数据,NAND闪存市场预计将从2020年的4318亿GB扩大到2024年的1.366万亿GB,复合年增长率为33.4%。
4D NAND
2018年SK海力士推出96层512Gb的基于CTF(Charge Trap Flash, 电荷捕获型闪存)的4D NAND闪存。这款产品基于TLC(Triple-Level Cell,三层单元)阵列,采用3D CTF设计和PUC(Peri. Under Cell)技术。这是SK海力士在业内首次将3D CTF与PUC相结合,这与结合3D浮栅与PUC的方式不同。其结果,前者获得了业界最好的性能和生产效率。公司将该产品命名为“基于CTF的4D NAND闪存”,以区别于当前的3D NAND闪存技术。
电荷阱闪光灯(CTF)
与浮栅将电荷存储在导体中不同,CTF将电荷存储在绝缘体中,消除了电池之间的干扰,提高了读写性能,同时与浮栅技术相比,减少了单位电池面积。在CTF架构中,没有浮栅,数据被临时存放在闪存内由氮化硅成的非传导层,也就是所谓的保持室(Holding Chamber)中,从而可以获得更高等级的可靠性与更好的存储电路的控性。大多数3D NAND公司正在采用CTF。
PUC技术
这是一种通过在电池阵列下放置外围电路而使生产效率最大化的技术。那SK海力士的4D NAND与竞争“对手”3D NAND的区别是什么呢?SK海力士称其结合了自身CTF设计与Periphery Under Cell(PUC)技术。简单来说,3D闪存由阵列和外围电路两个主要组件组成。与传统3D NAND相同,SK海力士的阵列是垂直堆叠的层用于存储数据,而外围电路排列在单元边缘。由电路控制阵列,但随着NAND层的增加,它就会消耗芯片空间,增加复杂性与尺寸大小,由此增加产品的最终成本。
为了解决这一问题,SK海力士的4D NAND采用了PUC设计,将外围电路放置在阵列之下而不是围绕,来提高存储密度,同时降低成本。然而,这与英特尔和美光首次推出第一代3D闪存设计相同,那边称之为“CMOS under Array”(CuA)。并且,三星也已经宣布其将来会转向CuA型设计,因此这绝不能算是新技术了。
2分单元阵列选择技术(2-division cell array selection technology)
字线在NAND闪存电路中向电池施加电压。层数越多,字线越薄,就会降低细胞的高度,对字线的电阻越大,就会影响速度。通过将连接字线的电池与现有的电池相比分成两部分,可以降低电阻,从而缩短施加电压的时间,提高读取速度。
电池层间高度降低技术
随着层数的增加,通过钻孔形成存储单元就会变得困难。这导致电阻增加,电流减少,难以保证性能和可靠性。为此,这就需要尽可能降低单元间层的高度,但这会增加单元间的干扰和缺陷率。电池层间高度降低技术不仅大幅降低了176层的电池层间高度,而且通过相关工艺和设计技术确保了具有竞争力的性能/可靠性。
层变定时控制技术
增加层数和降低层高往往会导致通道孔扭曲和单元散射恶化,从而降低每一层的性能和可靠性。该技术根据每层的特性调整施加电压的数量和时间,以保持均匀的电池特性,提高了性能和可靠性。
超精密定位技术
由于随着层数的增加,不可能一次钻出用于单元形成的孔,所以使用两次钻出孔的双堆叠工艺。双堆叠技术的核心是使堆叠误差最小化。如果堆栈没有正确对齐,将导致堆栈之间的电流流动不顺畅,并发生恶化,降低成品率、性能和可靠性。SK海力士自2017年推出72层的产品以来,就一直在使用双堆叠技术,对176层产品进行了改进,并基于自身的专业知识,实时自动校正孔的位置和尺寸。
存储厂商们各自努力,176层顶峰见实力
在全球NAND市场份额中,虽然美光排在第七位,但是在堆叠能力方面,美光却毫不逊色。美光是第一家发布176层3D NAND的存储厂商,其第五代3D NAND闪存是176层构造,这也是自美光与英特尔的存储器合作解散以来推出的第二代产品。2020年11月9日,美光宣布将批量发售世界上第一个176层3D NAND。
据美光官网介绍,该176层NAND采用了独特的技术,替换门架构将电荷陷阱与CMOS阵列下(CuA)设计相结合,与同类最佳竞争产品相比,其die尺寸减小了约30%。
三星电子作为全球NAND领导者,占有33.8%的市场份额,如果三星想在很长一段时间内保持这一头把交椅,就必须始终走在前面。三星电子计划在2021年上半年大规模生产具有170层或更多层的第七代V-NAND闪存,并将使用字符串堆叠方法,结合两个88L模具,新芯片还将采用“双栈”技术。行业观察家表示,由于三星电子改变了其堆叠方法,该产品的发布已被推迟。
铠侠也没闲着,值得一提的是,NAND闪存由东芝于1987年首次提出的。今年10月,铠侠表示,铠侠将在日本中部三重县的四日市工厂内建立一个新的1万亿日元(95亿美元)工厂,以提高其尖端NAND闪存的产量,因为他们的目标是满足5G增长推动的不断增长的需求网络。这项投资将与美国合作伙伴Western Digital进行。该工厂将从明年春季开始分两个阶段进行建设。这家占地40,000平方米的工厂将是铠侠最大的工厂。
英特尔也谈到了他们的3D NAND技术。早在2019年9月于韩国首尔举行的英特尔存储日上,英特尔宣布他们将跳过业界大多数人正在开发的128层NAND闪存节点,并将直接跳到144层。
西部数据于今年1月份宣布,它已经成功开发了其第五代3D NAND技术BiCS5,BiCS5设计使用112层,而BiCS4使用96层。
长江存储进步非凡,他们坚持创新发展,走差异化的路线,于2018年7月正式推出自家的独门绝技Xtacking®架构。传统3D NAND架构中,外围电路约占芯片面积的20~30%,降低了芯片的存储密度。随着3D NAND技术堆叠到128层甚至更高,外围电路可能会占到芯片整体面积的50%以上。Xtacking®技术将外围电路置于存储单元之上,从而实现比传统3D NAND更高的存储密度。2020年4月,长江存储抢先推出了128层QLC 3D NAND闪存芯片X2-6070。目前长江存储的技术已经处于全球一流的水准,下一步就是解决产能的问题。
相关问答
武汉的GDP能在十年后进前五吗?再过10年,武汉GDP进前5,就是除北上广深外,武汉GDP总量必须要超过重庆、苏州、天津、成都。讨论问题不搞地域攻击。有没有可能?首先,武汉和成都的GDP是最接...改...
如何编写nandflash驱动?实际上与其他嵌入式系统一样。给没有操作系统的手机写驱动:查看datasheet,一点一点写吧;有操作系统的,先学习操作系统提供的API接口,再学习操作系统提供给...
如何看待长江存储计划在明年第四季度量产64层堆叠的3D?2018年NAND闪存价格由涨转跌,NAND闪存价格至少跌了50%,主要原因是64层3DNAND闪存堆栈产能大幅增加,市场供应大增,今年底三星、东芝等公司又推出了96层堆栈的...
万利达音v9学习机好不好升级系统?-ZOL问答1、安装V9驱动程序(若已安装,可跳过):机子在关机状态下,按住面板上的“音量+”...分别对应选择:nand.bin打开选择——nand.bin;loader.bin打开选择——loader....