选eMMC、UFS还是NVMe?手机ROM存储传输协议解析
伴随着半导体技术日新月异的蜕变,手机ROM的容量也突飞猛进。如今的旗舰手机,几乎已经找不到16GB ROM的存在,最新发布的iPhone 8/iPhone 8 Plus也将32GB版本砍掉,直接从64GB起步。而系统固件、App和各种文件容量的逐步增加,既对闪存容量提出了高要求,也对读取速度提出了高标准。在选购大存储容量机型的同时,我们也就不能忽视闪存的速度。在目前的手机市场,决定闪存速度的因素除了颗粒类型、系统优化外,不同传输协议的影响最为关键。
基于NAND的三大派系
我们评测中常常提到的ROM,也就是闪存(Flash Memory),手机上安装App的数据和缓存都会保存在ROM里,ROM速度越快,App加载和运行的速度自然也就越快。第一款商业性闪存是由Intel推出的NOR Flash芯片,后来东芝发布了NAND Flash。NAND Flash具有较快的读写速度,每个存储单元的面积也较小,逐渐占据了存储市场的主流,如今广泛用于PC上的SSD和手机的ROM,本质上都是NAND闪存。
▲随着手机ROM的增加,越来越多的用户不再使用microSD卡,一方面是因为手机ROM已经足够使用,另一方面则是microSD卡的读取速度大多不如NAND,体验参差不齐。
虽然手机ROM均是由NAND闪存颗粒构成,但由于颗粒类型和传输协议的不同,传输性能上也有了明显差异。在存储颗粒类型上,SLC、MLC和TLC究竟谁优谁劣的争论由来已久。SLC性能最出色,但由于成本较高,目前几乎没有手机使用;MLC性能够用,价格适中,寿命较长;TLC综合性能较低,价格低廉,寿命相对短。
▲虽然大部分用户都认为MLC颗粒更好一些,但随着制程的进步和TLC成本的逐步降低,TLC产品开始大量上市,MLC产品的份额难免被蚕食。
而在传输协议方面,eMMC、UFS和NVMe就是目前手机闪存市场上常见的三种,区别主要在于主控芯片、接口标准以及更底层的Flash芯片标准。如果将传输协议比作高速公路上限速不同的车道,那颗粒类型就是不同马力的车辆,由此产生的组合自然也就跑出了不同速度。
eMMC
eMMC是一个起源较早的技术,全称叫embedded MultiMedia Card。资深的手机玩家或许还记得过去部分手机上使用过的MMC存储卡,跟SD卡很类似。没错,eMMC就是在MMC基础上发展而来,和MMC一样沿用了8 bit的并行接口。2015年前几乎所有主流的智能手机和平板电脑都采用这种存储介质,在传输速率不高的时代,并行接口足够手机上使用了。
这一标准从eMMC 4.3一路发展到现在的5.1,改变的只是总线接口的带宽,目前,eMMC的总线接口主要以eMMC 4.4、eMMC 4.5、eMMC 5.0、eMMC 5.1为主,理论带宽分别为104MB/s、200MB/s、400MB/s和600MB/s,实际应用中的速度会稍有折扣。
▲采用并行接口的eMMC已经逐渐难以满足当下手机用户的需求,即便不断升级也不过是将单行道拓宽,无法高效地实现“双向通行”。
UFS
UFS的全称是Universal Flash Storage,也就是通用闪存存储。最早出现的UFS 1.1速度并不算块,理论带宽只有300MB/s。受成本和兼容性的限制,速度没有明显优势的UFS 1.1没有普及就销声匿迹了。JEDEC 发布了全新的USF 2.0标准,并出现了两个版本,其中UFS 2.0 HS-G2的理论带宽约为740MB/s,更快速的UFS 2.0 HS-G3理论带宽达到了1.5GB/s,是目前最快的 eMMC 5.1的2.5倍。UFS采用的是串行接口,支持同时读写数据,在待机状态下的功耗只有eMMC的一半左右。
2016年3月,JEDEC发布了UFS 2.1的闪存存储标准。相比UFS 2.0,速度标准没有任何变化,仍然为强制标准HS-G2,可选标准HS-G3。改进主要分为三部分:设备健康、性能优化和安全保护。对于闪存制造商而言,由于UFS 2.0已推出HS-G3对应的版本,UFS 2.1选用更低的标准不再有太多的意义。因此市面上UFS 2.1全部采用可选的HS-G3标准,即最高读写速率为1.5GB/s。
▲不同版本的eMMC和UFS协议对最高读写速率的影响十分明显
NVMe
NVMe(NVM Express)本是为了SSD而生,用以替代SSD上的SATA接口。2015年,苹果在iPhone 6s/iPhone 6s Plus上引入了MacBook上备受好评的NVMe协议,大容量版本更支持TLC/SLC混合缓存加速,让iPhone上的NAND闪存获得了媲美SSD的性能。和eMMC所用的SDIO接口不同,NVMe使用的是PCIe接口,这个PCIe并不是PC上的那个,而是基于MIPI M-PHY物理层的PCIe。相较传统的SCSI接口协议,NVMe协议具有高效率、低负载的特性,因此性能更高而且低延时。
三种协议真实表现
在了解了手机闪存中三种协议的优缺点后,再来看看它们都出现在哪些机型中,实际体验起来有什么差别。
NVMe是苹果为iPhone引入的,目前仅在iPhone 6s之后的机型中出现。很显然,这是苹果自己定制的技术,因为目前市面上没有可用的方案。在同一款iPhone上,不同容量的版本虽然采用的都是NVMe传输协议,但也存在MLC和TLC颗粒混用的情况。
以iPhone 7 Plus为例,32GB版本使用的是MLC颗粒,128GB和256GB版本则是TLC颗粒。在大容量版本上,NVMe提供了TLC/SLC混合缓存加速,将部分TLC模拟为SLC缓存进行加速,就导致了“皇帝版”和“乞丐版”之间的读写速度有了明显差异。通过PassMark测试分别测试iPhone 7 Plus 32GB、128GB和256GB版本的读写速度,32GB版本的读取速度和写入速度分别为691MB/s和39.6MB/s,256GB版本则达到了892MB/s和357MB/s。
▲凭借着从MacBook中引入的NVMe闪存的优势,苹果iPhone 6s/iPhone 6s Plus的闪存读写速度在当时几无对手。
好在iOS系统并不像Android那样开放,在非破解状态下既不可在手机上进行文件管理操作,连接电脑后也不能直接进行文件写入操作,所以在一般情况下,“乞丐版”的写入速度并没有令人感觉到和“皇帝版”拉开了明显差距。要知道,iPhone 7 Plus 128GB版本比32G版本贵了800元,这其中的差价已经足够买一台千元机了。
而刚刚面世的iPhone 8 Plus也有256GB版本和64GB版本可选,希望这次的“乞丐版”不再使用MLC颗粒,让购买的用户少花点钱,同样也能享受到“皇帝版”的待遇吧,毕竟和一台手机的使用周期相比,TLC的寿命已经够长了,而读写速度则能够明显提升用户体验。
▲从iPhone 6s开始,苹果在手机闪存上引入了NVMe协议(图中红色区域为闪存模块)。
UFS常见于Android阵营的高端旗舰机型中,有UFS 2.0 HS-G3和UFS 3.0 HS-G3两种。由于两者的最高读写速度一致,实际表现也十分接近,消费者很容易混淆。以三星Galaxy S8使用的东芝UFS 2.0协议的闪存(型号THGBF7G9L4LBATR,MLC颗粒)为例,实测最高读取速度为744.56MB/s,写入速度155.84MB/s,与三星Galaxy S8+使用的东芝UFS2.1闪存(型号THGAF4G9N4LBAIR,MLC颗粒)在读写速率上没有区别。然而,后者的顺序读取、顺序写入、随机读取、随机写入速度均比前者分别快40%、16%、120%、80%。在手机的日常操作中,我们恰恰需要大量读写小文件。随机读写操作占了绝大部分,而譬如拷贝高清电影的大文件读写操作反而很少。
除此之外,绝大多数的中低端手机还在使用着eMMC协议闪存,更低的成本、更大的产量以及够用的性能让它暂时还不会被淘汰,同时这些手机的闪存颗粒大多是价格相对便宜的TLC。通过AndroBench测试某款使用eMMC 5.1协议闪存的手机,其连续读写速度分别为226.51MB/s和87.8MB/s。
作为普通用户,如果厂商没有标明详细规格,该如何去判断它究竟用的是哪种协议呢?很简单,只要安装一个能够读取手机软件系统底层信息的App—Android终端模拟器就行。安装后输入“ls /proc/fs/*”(不含引号)后回车,出现的信息里面如果含有“sdd”,说明使用的是UFS闪存;出现的信息里面有“mmcblk”,则是eMMC闪存。
读写速度的影响
1.多任务执行响应速度更快
NVMe、UFS有专门串行接口,读写操作同时进行;能够动态调配队列任务,无需等待上一进程结束。相反,eMMC的读写操作必须分开执行,指令也是打包的,在执行多任务时eMMC自然要慢一步。
2.游戏加载速度更快
在预读大型游戏或大体积文件时,NVMe和UFS所需时间更短,载入一款游戏所需要的时间约为eMMC 5.0的1/3,相应在体验游戏时延迟更低,画面更流畅。比较明显的一个例子,使用iPhone 6和iPhone 6s分别运行《极品飞车》系列游戏,预读赛道地图时明显前者加载耗时更长一些,这里面除了不同处理器带来的影响外,闪存的读写速度差距也是主因之一。
3.连拍的照片写入更快
NVMe、UFS和eMMC体验上的区别还在于连续拍照上,连续拍照时NVMe、UFS能让照片写入、合成更快,eMMC拍摄时从按下快门到存储一张照片花费的时间更长,从而错失了拍摄良机。同时,现在十分流行的双摄手机在进行背景虚化或变焦拍摄时都有一个合成处理的过程,这个过程在高速闪存上进行时几乎是没有延迟的,而如果换到eMMC闪存上可能就会影响到用户的拍摄体验。
4.相册缩略图载入时间更短
当手机装满了几百张甚至上千张照片后,打开相册的图片缩略图就能很明显地比较加载的过程,这就是手机在读取闪存中的照片时跟不上刷新的速度造成的。优秀的手机屏幕时画面会随着滑动流畅载入,而差一点的手机就会有明显延迟甚至卡顿。
5.速度快了功耗也更低
NVMe、UFS闪存在相同的任务面前所花费的时间更短,更高的效率就意味着更低功耗。同时工作的时候UFS的功耗要比eMMC低出10%,日常工作中约能省35%的功耗。
总结
从近两年的手机闪存市场来看,UFS已经凭借不错的性能表现和尚可接受的价格,成为了旗舰机型的最佳选择,特别是已经曝光的UFS 3.0,理论最高读取速度对比前代暴涨1倍,达到了2400MB/s,是eMMC 5.1的6倍,十分让人期待。NMVe协议目前还只是出现在iPhone产品上,但性能已经得到了大家的肯定。反观eMMC已经出现后劲乏力的问题,即便eMMC 5.2的产品在不久将来出现,也无法突破并行接口瓶颈做出重大的提升。
ROM、RAM、DRAM、SRAM和FLASH的区别是什么?
ROM 和RAM指的都是半导体存储器,ROM是Read Only Memory的缩写,RAM是Random Access Memory的缩写。ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。
RAM有两大类,一种称为静态RAM(Static RAM/SRAM ),SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。另一种称为动态RAM(Dynamic RAM/DRAM ),DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快,但从价格上来说DRAM相比SRAM要便宜很多,计算机内存就是DRAM的。
DRAM分为很多种,常见的主要有FPRAM/FastPage、EDORAM、SDRAM、DDR RAM、RDRAM、SGRAM以及WRAM等,这里介绍其中的一种DDR RAM。
DDR RAM(Date-Rate RAM)也称作DDR SDRAM,这种改进型的RAM和SDRAM是基本一样的,不同之处在于它可以在一个时钟读写两次数据,这样就使得数据传输速度加倍了。这是目前电脑中用得最多的内存,而且它有着成本优势,事实上击败了Intel的另外一种内存标准-Rambus DRAM。在很多高端的显卡上,也配备了高速DDR RAM来提高带宽,这可以大幅度提高3D加速卡的像素渲染能力。
内存工作原理:
内存是用来存放当前正在使用的(即执行中)的数据和程序,我们平常所提到的计算机的内存指的是动态内存(即DRAM),动态内存中所谓的"动态",指的是当我们将数据写入DRAM后,经过一段时间,数据会丢失,因此需要一个额外设电路进行内存刷新操作。
具体的工作过程是这样的:一个DRAM的存储单元存储的是0还是1取决于电容是否有电荷,有电荷代表1,无电荷代表0。但时间一长,代表1的电容会放电,代表0的电容会吸收电荷,这就是数据丢失的原因;刷新操作定期对电容进行检查,若电量大于满电量的1/2,则认为其代表1,并把电容充满电;若电量小于1/2,则认为其代表0,并把电容放电,藉此来保持数据的连续性。
ROM也有很多种,PROM是可编程的ROM,PROM和EPROM(可擦除可编程ROM)两者区别是,PROM是一次性的,也就是软件灌入后,就无法修改了,这种是早期的产品,现在已经不可能使用了,而EPROM是通过紫外光的照射擦出原先的程序,是一种通用的存储器。另外一种EEPROM是通过电子擦出,价格很高,写入时间很长,写入很慢。
举个例子,手机软件一般放在EEPROM中,我们打电话,有些最后拨打的号码,暂时是存在SRAM中的,不是马上写入通过记录(通话记录保存在EEPROM中),因为当时有很重要工作(通话)要做,如果写入,漫长的等待是让用户忍无可忍的。
FLASH 存储器又称闪存,它结合了ROM和RAM的长处,不仅具备电子可擦除可编程(EEPROM)的性能,还不会断电丢失数据同时可以快速读取数据(NVRAM的优势),U盘和MP3里用的就是这种存储器。在过去的20年里,嵌入式系统一直使用ROM(EPROM)作为它们的存储设备,然而近年来Flash全面代替了ROM(EPROM)在嵌入式系统中的地位,用作存储Bootloader以及操作系统或者程序代码或者直接当硬盘使用(U盘)。
目前Flash主要有两种NOR Flash和NADN Flash。
NOR Flash的读取和我们常见的SDRAM的读取是一样,用户可以直接运行装载在NOR FLASH里面的代码,这样可以减少SRAM的容量从而节约了成本。
NAND Flash没有采取内存的随机读取技术,它的读取是以一次读取一块的形式来进行的,通常是一次读取512个字节,采用这种技术的Flash比较廉价。用户不能直接运行NAND Flash上的代码,因此好多使用NAND Flash的开发板除了使用NAND Flah以外,还作上了一块小的NOR Flash来运行启动代码。
一般小容量的用NOR Flash,因为其读取速度快,多用来存储操作系统等重要信息,而大容量的用NAND FLASH,最常见的NAND FLASH应用是嵌入式系统采用的DOC(Disk On Chip)和我们通常用的"闪盘",可以在线擦除。目前市面上的FLASH 主要来自Intel,AMD,Fujitsu和Toshiba,而生产NAND Flash的主要厂家有Samsung和Toshiba。
NAND Flash和NOR Flash的比较
NOR和NAND是现在市场上两种主要的非易失闪存技术。Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一统天下的局面。紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR和NAND闪存。
相"flash存储器"经常可以与相"NOR存储器"互换使用。许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。而NAND则是高数据存储密度的理想解决方案。
NOR是现在市场上主要的非易失闪存技术。NOR一般只用来存储少量的代码;NOR主要应用在代码存储介质中。NOR的特点是应用简单、无需专门的接口电路、传输效率高,它是属于芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在(NOR型)flash闪存内运行,不必再把代码读到系统RAM中。在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。NOR flash占据了容量为1~16MB闪存市场的大部分。
NAND结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。应用NAND的困难在于flash的管理和需要特殊的系统接口。
1、性能比较:
flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为1。
由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。
执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素:
● NOR的读速度比NAND稍快一些。
● NAND的写入速度比NOR快很多。
● NAND的4ms擦除速度远比NOR的5s快。
● 大多数写入操作需要先进行擦除操作。
● NAND的擦除单元更小,相应的擦除电路更少。
(注:NOR FLASH SECTOR擦除时间视品牌、大小不同而不同,比如,4M FLASH,有的SECTOR擦除时间为60ms,而有的需要最大6s。)
2、接口差别:
NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。
NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、地址和数据信息。
NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。
3、容量和成本:
NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。
NOR flash占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。
4、可靠性和耐用性:
采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。
A) 寿命(耐用性)
在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。
B) 位交换
所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特(bit)位会发生反转或被报告反转了。
一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问题,多读几次就可能解决了。
当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用EDC/ECC算法。
这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。
C) 坏块处理
NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。
NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。在已制成的器件中,如果通过可靠的方法不能进行这项处理,将导致高故障率。
5、易于使用:
可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。
由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。
在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。
6、软件支持:
当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。
在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR器件在进行写入和擦除操作时都需要MTD。
使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。
驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。
NOR FLASH的主要供应商是INTEL ,MICRO等厂商,曾经是FLASH的主流产品,但现在被NAND FLASH挤的比较难受。它的优点是可以直接从FLASH中运行程序,但是工艺复杂,价格比较贵。
NAND FLASH的主要供应商是SAMSUNG和东芝,在U盘、各种存储卡、MP3播放器里面的都是这种FLASH,由于工艺上的不同,它比NOR FLASH拥有更大存储容量,而且便宜。但也有缺点,就是无法寻址直接运行程序,只能存储数据。另外NAND FLASH 非常容易出现坏区,所以需要有校验的算法。
在掌上电脑里要使用NAND FLASH 存储数据和程序,但是必须有NOR FLASH来启动。除了SAMSUNG处理器,其他用在掌上电脑的主流处理器还不支持直接由NAND FLASH 启动程序。因此,必须先用一片小的NOR FLASH 启动机器,在把OS等软件从NAND FLASH 载入SDRAM中运行才行,挺麻烦的。
DRAM 利用MOS管的栅电容上的电荷来存储信息,一旦掉电信息会全部的丢失,由于栅极会漏电,所以每隔一定的时间就需要一个刷新机构给这些栅电容补充电荷,并且每读出一次数据之后也需要补充电荷,这个就叫动态刷新,所以称其为动态随机存储器。由于它只使用一个MOS管来存信息,所以集成度可以很高,容量能够做的很大。SDRAM比它多了一个与CPU时钟同步。
SRAM 利用寄存器来存储信息,所以一旦掉电,资料就会全部丢失,只要供电,它的资料就会一直存在,不需要动态刷新,所以叫静态随机存储器。
以上主要用于系统内存储器,容量大,不需要断电后仍保存数据的。
Flash ROM 是利用浮置栅上的电容存储电荷来保存信息,因为浮置栅不会漏电,所以断电后信息仍然可以保存。也由于其机构简单所以集成度可以做的很高,容量可以很大。Flash rom写入前需要用电进行擦除,而且擦除不同与EEPROM 可以以byte(字节)为单位进行,flash rom只能以sector(扇区)为单位进行。不过其写入时可以byte为单位。flash rom主要用于bios,U盘,Mp3等需要大容量且断电不丢数据的设备。
PSRAM,假静态随机存储器。
背景:
PSRAM具有一个单晶体管的DRAM储存格,与传统具有六个晶体管的SRAM储存格或是四个晶体管与two-load resistor SRAM 储存格大不相同,但它具有类似SRAM的稳定接口,内部的DRAM架构给予PSRAM一些比low-power 6T SRAM优异的长处,例如体积更为轻巧,售价更具竞争力。目前在整体SRAM市场中,有90%的制造商都在生产PSRAM组件。在过去两年,市场上重要的SRAM/PSRAM供货商有Samsung、Cypress、Renesas、Micron与Toshiba等。
基本原理:
PSRAM就是伪SRAM,内部的内存颗粒跟SDRAM的颗粒相似,但外部的接口跟SRAM相似,不需要SDRAM那样复杂的控制器和刷新机制,PSRAM的接口跟SRAM的接口是一样的。
PSRAM容量有8Mbit,16Mbit,32Mbit等等,容量没有SDRAM那样密度高,但肯定是比SRAM的容量要高很多的,速度支持突发模式,并不是很慢,Hynix,Coremagic, WINBOND .MICRON. CY 等厂家都有供应,价格只比相同容量的SDRAM稍贵一点点,比SRAM便宜很多。
PSRAM主要应用于手机,电子词典,掌上电脑,PDA,PMP.MP3/4,GPS接收器等消费电子产品与SRAM(采用6T的技术)相比,PSRAM采用的是1T+1C的技术,所以在体积上更小,同时,PSRAM的I/O接口与SRAM相同.在容量上,目前有4MB,8MB,16MB,32MB,64MB和128MB。比较于SDRAM ,PSRAM 的功耗要低很多。所以对于要求有一定缓存容量的很多便携式产品是一个理想的选择。
相关问答
求初二水平几个英文单词的英文解释英英互译.1.CD- ROM 2.DVD-R...[最佳回答]1.CD-ROMcompactdiscread-onlymemory只读存储器2.DVD-ROMdigitalvideodiscread-onlymemory数字化视频只读存储器...
rom 芯片运行条件?ROM(只读存储器)只读存储器(Read-OnlyMemory,ROM)以非破坏性读出方式工作,只能读出无法写入信息。信息一旦写入后就固定下来,即使切断电源,信息也不会...RO...
ROW 和RAW主要不同是-ZOL问答oX90Pro+举报我要想详细的4人讨论9097次围观关注问题写回答讨论回答(4)z1258763973ROM是只读存储器,断电后能保证数据不会丢失,一般保证比较重要的数...
romstar card什么意思-ZOL问答oX90Pro+举报7人讨论1.2w次围观关注问题写回答讨论回答(7)xqf以下为没有U盘启动项的几种情况及解决方法:1、电脑主板的BIOS不支持U盘启动,这种情况极...
为什么做完电脑开机就显示:This product iscoveredbyoneormore...[最佳回答]1.启动项有问题,根据你的主板型号,找BIOS设置方法.设置成第一硬盘启动.2.如果还不行的话可能是硬盘没有设置成活动主分区一类的问题,用U盘启动盘进...
小米路由器3a电源接口参数?答:小米路由器3a电源接口主要参数如下:最高传输速率1167Mbps,传输速率2.4GHz300Mbps,传输速率5GHz867Mbps,频率范围双频(2.4GHz,5GHz)。处理器MT...
tupe12分区啥意思?可以通过进入Recovery程序或者bootloader程序中,安装一个新ROM(安卓系统)。3、data此分区包含了用户的数据信息,如:联系人、短信、设置、用户安装的程序的,...
重装系统开机显示这个Rebootandselectp ro perbootdeviceor?开启计算机或重新启动计算机后,按下“Del”键就可以进入CMOS的设置界面。进入界面后,把光标移动到BIOSFEATURESSETUP(BIOS功能设定)上面,回车。进入下级菜单...
英语中wanna是什么的缩写,这样的词还有哪些?_作业帮[回答]wanna=wanttogotta=gottooughta=oughttogonna=goingto
iphone手机所说的机身内存和可用空间有什么区别? - 丸子妈 ...一、主体不同1、机都是在内存中进用空间:用来安装应用程序或者存储数据的空间。二、影响不同1、机身内存:内存大小会影响极其运行的速度。2、可用空...